
Background on Statistical Modeling of Volcanic Vent
Locations1

1 Prepared for the CoV workshop on
Volcanic Hazards for Nuclear Facilites

Chuck and Laura Connor, Aurélie Germa, Jacob Richardson

September 6, 2018

Hazards of new volcanic vents

The opening of a new volcanic vent is a geologically rare phenomenon,
but one that can produce significant hazards. These hazards include
the formation of lava flows, pyroclastic fall and flow, ballistic, and
tephra fallout. Most volcanic systems are distributed, in the sense
that new eruptions sometimes occur at a new location, which has
not been the site of previous volcanic eruptions. Geologic mapping
shows that over time a volcanic system, like the Mt. Lassen volcanic
system, can form tens to hundreds of vents. This “diffusion of vents"
means that the hazards of new vent formation need to be assessed. Geologists Lyell and Desmarest both

noted the dispersed nature of some
volcanism, in Mexico and France
respectively. Williams described the dis-
persed nature of volcanism around the
newly formed Parícutin volcano (Mex-
ico) in great detail. Rittman appears
to have coined the term monogenetic
volcanic field in his 1962 book Volcanoes
and Their Activity. Nakamura [1977]
appears to have been the first to use
the term monogenetic volcanism in a
scientifically reviewed publication.

Figure 1: A new vent forming. The 1975

eruption of Tolbachik volcano is one
example of a large scoria cone built
by eruptive activity during a period of
only several weeks. Here, tephra fallout
is spreading far downrange from the
new vent. Photo attributed to Pavel M.
Kartashov.

Problems assessing new vent formation

We do not know where volcanic vents will form in the future. Even
with the best available seismic data it has provided to be very diffi-
cult to forecast where vents will form – often just hours before they
do erupt at the surface. So we have to guess. Statistical models are
the most widely used method of guessing.

Estimating where new volcanic vents are likely to form has often
proved contentious. Why the controversy? The underlying geologic
processes controlling the distribution of these events are complex
and incompletely understood. The frequency of such potentially
catastrophic events is often low, so data used in these analyses are
often sparse. The selection of specific statistical models to estimate
spatial density is often subjective. These factors result in uncertainty.

Hazards associated with the opening of new vents may be exasper-
ated by the topography of volcanic systems, which is often complex
and characterized by steep slopes. For example, small variations in
vent location may cause lava to flow in a completely different direc-
tion down the flanks of a volcano. There is no doubt that probabilis-
tic models of lava flow inundation are quite sensitive to models of
vent location!

In addition, loci of activity may wax and wane with time, such that
past vent patterns may not accurately forecast future volcano loca-
tions. It is important to determine if temporal patterns are present in
the distribution of past events, so that an appropriate time interval
can be selected for the analysis (i.e., use only those vents that repre-
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Figure 2: At Lassen, new eruptions
sometimes produce new volcanic vents.
The Lassen area includes approximately
300 volcanic vents formed in the last 2

Ma. Photo from USGS

sent likely future patterns of activity, not patterns that represent older
volcano distributions).

Figure 3: Small changes in vent location
can result in large changes in areas
impacted by volcanic hazard, illustrated
here by a lava flow simulation for two
different vents on the flanks of Aragats
volcano, Armenia.

These problems place a premium on statistical modeling of the
likelihood of new vent formation. In spatial density estimation, the
likelihood of new vent formation is treated as a probability density
function. The probable location of a new vent, given that a new vent
forms, varies across the map area. Statistical models attempt to guess
what this probability density function looks like, using data, such as
the locations of older vents.

What is spatial density?

The reason to estimate spatial density is to determine possible loca-
tions of future geophysical events (volcanic eruptions, earthquakes,
lahar source areas, sinkholes), or to estimate the probability of an
event occurring at a specific location, given that such events occur
within the region.

There is ambiguity in the literature regarding the use of the terms
density and intensity. In the geosciences, variation in the number of
events per unit area (say the number of volcanic vents or earthquake
epicenters) is described using the term density. For example, one
might report the density of volcanic vents in a region as the number
of vents per 1000 km2. Intensity, in geoscience contexts, often refers to
the magnitudes of these events. The intensity of a volcanic eruption
can be characterized in terms of its total mass of eruptive products or
related indices [Pyle, 2000].

Density and intensity are defined differently in spatial statistics. In
this context, spatial intensity refers to the expected number of events
per unit area defined at a point, s, a matrix containing the x and
y coordinates of the location of the point [Silverman, 1978, Diggle,
1985]. Suppose there exists a set of events (e.g. volcano locations) that
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Figure 4: A statistical model of spatial
density. White circles show volcanic
vent locations on the western side
of the Managua graben (Nicaragua),
superimposed on a shaded-relief digital
elevation model. Faults in the area
are shown by red and yellow lines
(red faults slipped during the 1972

earthquake that destroyed the city of
Managua.

Areas most likely to experience
future volcano vent formation are
shown by colored areas, estimated us-
ing a elliptical kernel density function.
There is a 95% chance that a future
vent will form in the contour enclosing
the blue-shaded area, with the highest
probability zones shown in red.

One vent, in downtown Managua,
appears to be an outlier and shows the
shape of the kernel density function.
From Connor et al. [2015], data courtesy
of Jose Armando Saballos.
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occur within a given region, R. These events can be designated as
xn(n = 1, 2, ..., N) ∈ R where N is the total number of events, each
consisting of the spatial location, x and y of the event (possibly given
in Easting and Northing coordinates, or, latitude and longitude). One
way we can create a model of spatial intensity from these events is
to imagine they are realizations of a random variable, X, a function
that describes the set of all possible realizations. For example, X
might be the distribution of potential earthquakes or the distribution
of potential volcanoes, from which a set of observed realizations
(e.g. those found in the earthquake catalog or on a geologic map)
are drawn. The spatial intensity is formally written as [Gatrell et al.,
1996]

λ(s) = lim
ds→0

{
E(X)

ds

}
(1)

where E(X) is the expected number of events that fall within a small
area ds about the point s (hence, if the location, s, is given as Easting
and Northing with units of meters, then the units of λ(s) are m−2).
At first glance it appears that the statistical definition of intensity is
equivalent to the term density as commonly used in the geosciences.
This is not quite true. The geological processes that result in a given
event distribution are incompletely known. We can think of these ge-
ological processes as giving rise to a stochastic point process that de-
scribes the relationship between the set of events and the geological
processes that led to their formation. As the stochastic point process
is incompletely known, the true value of the local spatial intensity,
λ(s), is also unknown. That is, the observed distribution of events is
only one realization of the underlying process that gives rise to these
events. Our goals are to find an estimate of the spatial intensity, λ̂(s),
that approximates the true but unknown value of spatial intensity,
λ(s), and to understand the uncertainty in this estimate. The sum of λ̂(s)× grid area on a spa-

tial density map is equal to 1 (or close
to 1 if some of the density function is
beyond the bounds of the map). The
sum of λ̂(s)× grid area on a spatial
intensity map equals the total number
of vents on the map (with the same
caveat).

In hazard assessments, there is a further requirement, that this
information be used to forecast the spatial distribution of possible
future events. Often we consider spatial intensity in terms of the
probable location of some future event, given that one occurs within
our region of interest. This conditional probability can be estimated
by:

f̂ (s) =
λ̂(s)∫

R λ̂(s)d(s)
. (2)

Integrating f̂ (s) across the region of interest, R, gives unity, if R
is sufficiently large. Since all values of f̂ (s) within this region are
greater than or equal to zero, this makes f̂ (s) a probability density
function and this function may be used in probabilistic hazard mod-
els. f̂ (s) is referred to as one estimate of the spatial density, and
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one can consider the spatial density per unit area in terms of con-
ditional probability (e.g. given a volcanic event in the region, what
is the probability that the event will occur within some small area
about the point s?). In addition, care is required in the selection of
the region R, as external events located close to the border may have
a non-negligible contribution to spatial density. A practical approach
is to select R to be quite large compared to the region of specific in-
terest (e.g. the volcanic system). In the following, we refer to spatial
intensity and spatial density within the context of spatial statistics. Spatial density is a type of probability

density function, so the area under the
curve must sum to 1.

Assumptions behind spatial density estimates

How does one develop a best estimate of spatial density? In the real
world, there is only one realization of an underlying geologic pro-
cess, the observed distribution of past events. Unfortunately, geology
is not conducive to repeating the experiment in a natural system. For
a given region there is just one earthquake catalog, or one geologic
map of volcano distribution. Presumably, if there existed a complete
geophysical model for these events, we would use this information to
better forecast the locations of future events. For example, if we knew
the distribution of melt in the asthenosphere and lithosphere, and if
we knew the state of the lithosphere through which the magma rises,
we might have a better sense of where volcanoes or volcanic vents
are most likely to form next. Currently, we lack such a complete geo-
physical perspective. Some data sets give an idea of where partial
melting of the mantle might occur, for example seismic tomographic
models of “slowness” in the lithosphere and asthenosphere [Kiyosugi
et al., 2010]. Other data, such as variations in gravity across a region
[Connor et al., 2000, Deng et al., 2017], show some correlation with
the existing distribution of volcanoes in some circumstances, but the
mechanisms relating gravity anomalies to the origin of magmas are
not completely understood.

Figure 5: There have been recent at-
tempts to build geophysical models to
explain spatial density. Here the spa-
tial density of vents along a profile in
the Springerville volcanic field (AZ) is
compared to a geophysical model that
simulates magma flux, given crustal
density contrast [Deng et al., 2017].
Magma originates in a uniform source
zone (red bar) but the flux at the sur-
face is altered by lithology variations in
the crust. The idea is that these lithol-
ogy variations cause observed variation
in vent spatial density.

The reliance on the distribution of past events implies that these
realizations are representations of some underlying random vari-
able, X, that will govern the distribution of potential events in the
future. This assumption immediately raises a fundamental question.
Which are the past events that should be used to develop the spatial
intensity estimate, λ̂(s) , and density, f̂ (s)? Event datasets used to es-
timate the spatial density of future events need to be consistent with
several features of geological processes.

First, any spatial intensity function for a geologic process must
change with time. On time scales of tens of millions of years, plate
boundaries change, volcanic arcs wax, wane, and migrate, and major
fault systems reorganize. In very long term probabilistic hazard
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Figure 6: Volcanic vents are located in
gravity lows, adjacent to gravity highs,
in the San Francisco volcanic field (AZ).
Dense, presumably rigid continental
crust (indicated by red areas in the
contoured gravity data) may hamper
magma ascent, leading to the formation
of volcano clusters over less rigid, less
dense crust.

The spatial density model should
be sensitive to geologic boundaries that
may influence volcano vent distribution
(and the possible locations of volcanic
vents that may form in the future).
From Deng et al. [2017].

assessments for high-level waste repositories, which may have 10
6 a

performance periods, these factors have to be considered in weighing
the validity of using specific data in developing spatial intensity
models. For processes like volcanism, where a geologic record of past
events usually persists for tens of millions of years, consideration
needs to be given to which events best represent the distribution of
future volcanism. For example, the distribution of Miocene volcanoes
in a given area might be much less relevant than the distribution of
Pliocene and Quaternary volcanoes. Thus, in order to develop an
estimate of the spatial intensity, a model of the geologic evolution of
the system is required. This geological model is used to justify the
inclusion of some geological features in the event dataset, and the
exclusion of others.

Second, it is necessary to assess the completeness of the geologic
record. In seismology, it is particularly clear that short earthquake
catalogs carry the risk of biasing estimates of spatial intensity. That
is, the record of earthquakes in a given region collected on a short
time scale might give an incomplete picture of the unknown distri-
bution of potential earthquakes, λ(s). Even volcanic events might be
missed in initial geological investigations, as volcanic vents might be
buried in sediment or otherwise obscured.

Third, geological events, even when they are all identified, may
be so rare as to present an incomplete picture of the underlying pro-
cess. Consider an earthquake as a single event, xn, one realization of
the random variable, X. If, for example, X can be characterized by a
uniform random distribution, then it is likely that the observed set
of realizations will have a spatially random distribution within the
region of interest, R. However, the underlying density usually has
additional structure, causing independent realizations to cluster. For
example, earthquake epicenters tend to cluster along plate bound-
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Figure 7: Volcanic vents in SW Honshu
(Japan) migrate with time. Quaternary
vent clusters (white triangles) do
not have the same distribution as
Pliocene volcanic vents (tan squares),
or composite volcanoes (tan large
triangles).

Because of this change in the lo-
cation with time, the spatial density
model includes some events and not
others. Alternatively a spatio-temporal
density model might be developed
[Bebbington and Cronin, 2011].

On this map, the log(probability) is
contoured by multiplying the spatial
density of volcanism in each volcanic
field by its estimate recurrence rate.

aries and volcanoes cluster above zones of partial melting in the
mantle. For random variables with a great deal of statistical structure,
such as many modes in spatial intensity, a great number of events
might be required to identify the statistical structure of the random
variable.

Figure 8: Volcanic vents in the
Springerville volcanic field (AZ) are
one realization of a random variable.

Fourth, it is critical to ascertain which geologic features are actu-
ally independent events. The true statistical structure of the random
variable, X, might be obscured if some events included in the event
dataset are not independent. For example, great earthquakes are fol-
lowed by aftershocks. An earthquake aftershock, however, is not a
random sample of the random variable “spatial distribution of great
earthquakes”, because these aftershocks are not realizations of this par-
ticular random variable. Rather, they are independent realizations of
another random variable, say “spatial distribution of aftershocks about a
great earthquake”. So, the distribution of aftershocks does not neces-
sarily give the best sense of the spatial intensity of great earthquakes,
although these two random variables are correlated.

Similarly, volcanoes are complex geologic structures. The spatial
distribution of polygenetic volcanoes reflects processes of magma
generation and rise through the crust. The distribution of small
vents (sometimes referred to as parasitic or adventive cones) does
not necessarily reflect the distribution of polygenetic volcanoes, so a
spatial intensity estimate that includes all vents as events would not
correctly model the underlying random variable. Furthermore, in
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monogenetic volcanic fields alignments of volcanic cones develop in
response to single magmatic events, episodes of magma rise through
the shallow crust. This is because single igneous dikes ascending
through the crust might form segments and rotate within the shal-
low crust, each segment feeding a separate vent and each building a
volcanic cone. If the goal of analysis is to forecast the distribution of
future magmatic events, each of which might produce more than one
monogenetic volcano, geological data must be gathered and volca-
noes formed by the same magmatic event must be somehow grouped
as single events [Runge et al., 2014].

Figure 9: The Laki (Iceland) fissure
eruption. Many vents...one event.

Independence of events is not necessarily easy to determine.
Rather than simply counting volcanoes on a geologic map, one must
make a geologic assessment of the independence of these data. For
volcanoes, this is generally accomplished through detailed analyses
of radiometric age determinations, stratigraphic correlations, and
related geologic data. Often, even detailed analyses do not resolve
whether or not specific features should be grouped as single events
or treated as separate, independent events.

Consequently, a major task in preparing a spatial intensity esti-
mate is defining the dataset of events to be used. Certainly a major
expense in hazard assessment for a community is data gathering to
support interpretation of geological features as events. Hazard as-
sessments often consider alternative event datasets and account for
the affect of these varying datasets on spatial density estimates. This
strategy will be employed in the following examples.

Estimating spatial intensity with kernel methods

Spatial intensity models based on the distribution of past volcanic
or seismic events might be parametric or nonparametric. Parametric
models involve fitting a distribution, usually one from a common
set of distributions (e.g. uniform random or bivariate Gaussian) to
the distribution of events throughout a region or within zones (i.e.
subsets of the region of interest). This estimate yields a set of param-
eters (e.g. mean location of the volcanic field in Northing and Easting
coordinates, variance in Northing and Easting coordinates, or rota-
tion). Uncertainty in the distribution fit, and uncertainty in parameter
estimates of spatial intensity, can be calculated using maximum likeli-
hood estimation. A significant drawback of these parametric methods
is that they assume a priori that the distribution of volcanoes is ex-
plained by the parametric distribution, for example that volcano
distribution is reasonably described as a bivariate Gaussian density.
This is not necessarily the case. In fact, it has been shown repeatedly
that volcanoes cluster within volcanic fields. Such clustering may be
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completely smoothed by simple parametric models.
A nonparametric approach for estimating the spatial intensity in-

volves kernel density estimation 2. With this technique, the observed 2 Bernard W Silverman. Density Esti-
mation for Statistics and Data Analysis,
volume 26. CRC press, 1986

event locations are used to estimate the spatial intensity at any point
in the region using a kernel function. For example,

λ̂(s) =
1

2πh2

N

∑
i=1

exp

[
−1

2

(
di
h

)2
]

(3)

is a 2D radially-symmetric kernel function where the spatial intensity
decreases with distance from events based on a bivariate Gaussian
function. The local spatial intensity estimate, λ̂(s), depends on its Divide the right-hand side of equation 3

by N to obtain the spatial density.distance, di, to each event location, and the smoothing bandwidth, h.
The rate of change in spatial intensity with distance from events de-
pends on the size of the bandwidth, which, in the case of a Gaussian
kernel function, is equivalent to the standard deviation of the kernel.
In this example, the kernel is radially symmetric, that is, h is constant
in all directions. Nearly all kernel estimators used in geologic hazard
assessments have been of this type [Lutz and Gutmann, 1995, Connor
and Hill, 1995, Condit and Connor, 1996, Connor et al., 2000]. The
bandwidth is selected using some criterion, often visual smoothness
of the resulting spatial intensity plots, and the spatial intensity func-
tion is calculated using this bandwidth. Alternatively, an adaptive
kernel function can be used, in which the spatial intensity varies as
a function of event spatial intensity. These adaptive kernel functions
are also radially symmetric.

Figure 10: Shaded-relief map of a 2D
radially-symmetric Gaussian kernel
function drawn about a single point.
The point is located at the highest
spatial density.

Here is a snippet of PERL code that illustrates the implementation
of equation (3) in code:

$sumn=0;

for ($i=0; $i<$N; $i++) {

# here is the distance squared formula

$dist1=($x-$volcanoes[$i][0])*($x-$volcanoes[$i][0])

+ ($y-$volcanoes[$i][1])*($y-$volcanoes[$i][1]);

#now calculate and sum the kernel

$dist2 = $dist1/($h*$h);

$kuu = 1/(2*3.14159) * exp(-0.5*$dist2);

$sumn += 1.0/($h*$h) * $kuu;

}

Figure 11: Spatial density about vol-
canic vents calculated using the com-
puter code at left.

Note that h has to be specified elsewhere in the code, the array
volcanoes contains the spatial information (Easting, Northing) about
the point distribution, and N is the total number of volcanoes in the
dataset for which spatial density is estimated. In this code, spatial
density is estimated at the point x, y. If there are many such points
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(say the calculation is done on a grid, then this snippet of code must
be executed repeatedly.

Equation (3) is a simplification of the more general case, whereby
the amount of smoothing by the bandwidth, h, varies in magnitude
depending on direction. A two-dimensional elliptical kernel with a
direction varying bandwidth is given by

λ̂(s) =
1

2π
√
|H|

N

∑
i=1

exp
[
−1

2
bTb

]
(4)

where,
b = H−1/2d. (5)

The bandwidth, H, is a 2 × 2 element matrix that is positive and
definite (important because the matrix must have a square root),
|H| is the determinant of this matrix and H−1/2 is the inverse of its
square root. d is a 1 × 2 distance matrix (i.e. the x-distance and y-
distance from s to an event), b is the cross product of d and H−1/2,
and bT is its transpose. The resulting spatial intensity at each point
location, s, is usually distributed on a grid which has total extent that
defines the region, R.

0
3 km

4 km

N

3 km

4 km

Figure 12: An elliptical bivariate Gaus-
sian kernel density function. Closed
contours are 1,2, and 3 standard devia-
tions.

One difficulty with elliptical kernels is that all elements of the
bandwidth matrix must be estimated. Several methods have been
developed for estimating an optimal bandwidth matrix based on the
locations of the event data, summarized in the statistics literature
by Duong et al. [2007]. Here we utilize two techniques, a modified
asymptotic mean integrated squared error (AMISE) method, devel-
oped by Duong and Hazelton [2003], called the SAMSE pilot band-
width selector, and the smoothed cross-validation (SCV) method of
Hall et al. [1992], to optimally estimate the smoothing bandwidth for
our Gaussian kernel function. These bandwidth estimators are found
in the freely-available R statistical package.

Uncertainty in spatial density estimates

Uncertainty exists in the estimates of spatial density. This uncer-
tainty stems from: (i) ambiguity in event data sets used to develop
kernel estimates, (ii) application of the kernel density function, (iii)
uncertainty in the bandwidth estimate used in the kernel density
estimation, and (iv) few event data, a common problem in hazard
assessment. Each of these in considered in the following, with par-
ticular emphasis on the treatment of uncertainty arising from sparse
data.
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Figure 13: An elliptical bivariate Gaus-
sian kernel density function is used to
construct this spatial density model
for volcanic vents of the Eastern Snake
River Plain, Idaho. The Idaho National
Laboratory (INL), a sprawling nuclear
facility, is outlined in white.

Vents shown as black circles are
mapped at the surface. Vents shown
as white dots are only known from
borehole data, because these vents are
buried by subsequent lava flows from
younger vents (The INL is located in a
shallow valley that is gradually filling
with lava flows). Including these “hid-
den vents" in the spatial density model
increases the conditional probability of
new vent formation estimated in the
INL area. From [Wetmore et al., 2009].

Event definition

Event definition affects the total number of events used to estimate
density, and may introduce bias in density estimates. This tends to
diminish the weight associated with events in the center of the dis-
tribution in this particular case, as these events all formed multiple
volcanoes.

Kernels functions

Spatial density estimates made using kernel functions, as opposed
to hazard zonation models or parametric models, are explicitly data
driven. A basic advantage of this approach is that any spatial density
estimate will be consistent with the known data. Equations (3) and
(4) are bivariate Gaussian kernels. Numerous authors have shown
that the use of other kernels, such as the Epanechnikov kernel or the
Cauchy kernel has little impact on the final density estimate. In haz-
ard assessment, kernel functions with infinite tails (e.g. Gaussian) are
preferred, as the probability is positive and real everywhere, albeit
very small at locations far from past events. A picture of a kernel
function, contoured around a single point, is shown in Figure 12. A
potential disadvantage of these kernel functions is that they are not
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inherently sensitive to geologic boundaries. One might hope that a
complete understanding of the geology would result in a modifica-
tion of the density estimate derived from a mathematical function.

Kernel bandwidth

Bandwidth selection is a key feature of kernel density estimation,
and is particularly relevant to volcanic hazard studies [Bebbington,
2013, Jaquet et al., 2008]. Bandwidths that are narrow focus density
near past events. Conversely, a large bandwidth may over-smooth
the density estimate, resulting in unreasonably low density estimates
near clusters of past events, and overestimate density far from past
events. This dependence on bandwidth can create ambiguity in the
interpretation of spatial density if bandwidths are arbitrarily selected.

Bivariate bandwidth selectors like the SCV and SAMSE methods
appear to be very promising, because although they are mathemat-
ically complex, they find optimal bandwidths using the actual data
locations, removing subjectivity from the process. The bandwidth se-
lectors used in this chapter provide global estimates of density, in the
sense that one bandwidth or bandwidth matrix is used to describe
variation across the entire region. An alternative method is to use
adaptive kernel estimates, in which case the bandwidth changes with
event density. These adaptive bandwidths are calculated assuming
radially symmetric kernel functions. Future research will likely in-
volve developing bandwidth selectors that are adaptive across the
map region.

Sparse event data

Often in hazard assessment there is a “problem” that there are few
data available from which to forecast future events. That is, often
hazard assessments are needed for places where events are not so
frequent that the geologic hazards are completely obvious. Instead,
hazard analysis is most often required were few geologically haz-
ardous events have occurred in the past. This is paradoxical because,
by definition, uncertainty in hazard assessments must be compar-
atively high in these regions. If a spatial density is estimated using
thousands of earthquakes or hundreds of volcanoes, we can assume
that the true density is well-represented by this model. Conversely,
if the spatial intensity estimate is based on a handful of events, we
might expect high uncertainty in the estimate. For example, the dis-
covery of a single additional volcano, buried in sediment, might alter
the shape of the estimated regional spatial density.
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A spatial density model for Lassen volcano

Volcanoes in the Lassen system and adjacent areas are broadly clas-
sified as “silicic" or “mafic" based on the chemistry and mineralogy
of the lavas. We performed a spatial density analysis on these two
groups separately, then added the maps together, renormalizing. This
only works if the spatial density is weighted by the recurrence rate of
volcanism, which is thought to be different for the two groups.

Figure 14: A spatial density model for
Lassen volcano and the surrounding
region. Felsic and andesitic volcanic
vents tightly cluster in the area of
Lassen Peak and Chaos Crags. Mafic
volcanism is more widely distributed,
and most clustered in the area of the
Poison Lake Chain of craters, also
known as the Caribou volcanic field,
East of Lassen Peak. How to weight
different types of volcanoes, perhaps
with different magma source regions
and different hazards, is an important
area of research.
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