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Objectives for Week 1

• Review the basics of
Newton’s Laws

• Learn about Gravity
Units

• Understand the
major causes of
planetary-scale
variation in gravity
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Newton’s Law

Newton’s law of gravitation:

F =
Gm1m2

r2

where:
F is magnitude of gravitational
force.
m1 and m2 are masses.
r is the distance between the
two masses.
G is the gravitational constant
6.67× 10−11Nm2kg−2

Units of F are N = kgms−2.

Newton’s law does not describe why gravity exists or
how it works. Instead, his law describes the magnitude
of gravity in terms of gravitational force with the
famous inverse square law. In its classical form, the
law shows force that exists between two masses in
terms of their distance apart and the gravitational
constant. The masses are “point” masses, so their
geometry is ignored and the distance between them is
the distance from point to point.

Newton did not know the value of the gravitational
constant. This was later measured by Cavendish and
refined, but it is still imprecisely known. We think the
gravitational constant is the same everywhere in the
universe, but cannot be sure since we lack a precise
theory of why gravitational force exists. In geophysics,
the main thing to remember about the gravitational
constant is it’s units. The constant works out so that
the force is directly proportional to mass and inversely
proportional to distance, yielding the constant’s
non-intuitive units. Most calculations are done in the
MKS system, as shown here, and then converted to a
different system of units, as described later.

Gravity 1



Gravity 1

Using Newton’s Law

Examples

What is the magnitude of gravitational force between
two touching billiard balls?
Given:
Centers are 7.5 × 10−2 m apart
Mass of each ball is 0.225 kg

F =
6.67 × 10−11(0.225)2

(7.5 × 10−2)2

≈ 6 × 10
−10N

What is the gravitational force acting between one
billiard ball resting on the Earth’s surface and the
Earth (mass of Earth, ME = 5.9742 × 1024 kg;

radius of Earth, RE = 6.378 × 106 m)?

F =
6.67 × 10−11(0.225)(5.9742 × 1024)

(6.378 × 106)2

≈ 2N

Of course the gravitational force has magnitude and
direction. If there are more than two billiard balls, the
gravitational force is calculated between each pair and
summed. This is a vector addition because the
direction and magnitude of the attraction varies.
Using the illustration above, consider gravitational
force acting on the 10 ball due to the other three
balls.

Forces sum

Gravitational (and magnetic) forces sum. This is
extremely important because it means the total
gravitational force acting on a point is the sum of all
gravitational forces acting on that point. The total
distribution of masses affect the gravitational force at
any given point.

Consider a billiard ball resting on the surface of the
Earth at solar noon (the sun is directly overhead).
How much is the magnitude of the gravitational force
acting on the ball reduced by the presence of the sun
(mass Sun, MS = 2 × 1030 kg, distance to Sun,

DS = 1.5 × 1011 m)?
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Gravitational acceleration

Newton’s second law of motion
is:

F = ma

where:
m is mass.
a is acceleration.

By combining the universal law of
gravitation with Newton’s second law
of motion, the acceleration of m2
due to its attraction by m1 is:

F = m2a

=
Gm1m2

r2

a =
Gm1

r2

Galileo presented his work on motion as a dialogue among three
characters, Salviati, Sagredo and Simplicio. A critical statement in the
dialogue is by Sagredo, who says in response to a misstatement by
Simplicio, the simpleton in Galileo’s dialogue representing the
Aristotelian point of view: “But I, Simplicio, who have made the test,
can assure you that a cannon ball weighing one or two hundred
pounds, or even more, will not reach the ground by as much as a span
ahead of a musket ball weighing only half a pound, provided both are
dropped from a height of 200 cubits.” Some people (e.g., Stephen
Hawking) have called this statement the birth of modern science –
certainly experimental science. Basically, Newton was able to
formulate physical laws (shown at left) that quantified Galileo’s
observations about motion. Although the gravitational force acting
between the Earth and the “two hundred pound cannonball” is much
greater than the force acting between the Earth and the “half pound
musket ball”, the gravitational acceleration is the same (in both cases
m2 cancels and the mass m1 is the mass of the Earth). The
quantification is important – from Hawking (God Created the
Integers): “Where Galileo had shown that objects are pulled toward
the center of the earth, Newton was able to prove that this same force,
gravity, affected the orbits of the planets.”

Gravitational Acceleration

Considering gravitational acceleration, a, rather than force, F , means
we can think about gravity at a point, anywhere in space, without
reference to the mass at that point (m2). That is, gravitational
acceleration is defined at any point relative to the masses of the Earth,
Sun, Moon, and the mass-distribution of all other objects.
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Units of gravitational acceleration

For a bulk (homogeneous,
spherical) Earth model, gravity above
the surface (R > RE ):

g =
GME

R2

where:
g is gravitational acceleration.
G is the gravitational constant.
ME is the mass of the Earth.
R is the distance from the center of
the Earth.
RE is the radius of the Earth.

The units of acceleration are m s−2.
One Gal = 0.01 m s−2. One mGal
(the most common unit used to
describe variations in gravity at the

Earth’s surface) is 10−5 m s−2.
Average acceleration at the surface of

the Earth is 9.8 m s−2 or 980 000
mGal.

Another commonly used unit,
especially to describe changes in
gravity with time or very small change
in gravity with space, is the microgal.

1 µGal is 10−8 m s−2.

Examples

What is the gravitational acceleration at the surface of the Earth due
to the Moon when it is directly overhead (mass of moon,

MM = 7.3 × 1022 kg. approximate distance to moon,

RM = 3.8 × 108 m)?

g =
(6.67 × 10−11)(MM )

R2
M

= 0.000033720ms−2
= 3.4mGal

What is the vertical gradient in gravity near the surface of the earth?

g =
GME

R2

dg

dR
=

−2GME

R3
=

−2

RE
g

since g = 9.8m s−2, and RE = 6.378 × 106 m,
dg
dR

= −0.000003073 s−2, or -0.3073 mGal/m. So increasing
elevation by one meter near the surface of the Earth decreases gravity
by about 0.3 mGal.
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Variation in gravity with rotation and shape

As hown in the examples on the previous slide, gravity varies with spatial position and with time, because the
distribution of mass (planets) in the solar system changes with time. Also, gravity changes with distance

from the center of mass of the Earth, illustrated by the change in dg
dR

near the surface. These observations
lead us to the point that we have to consider all sources of potential variation in gravity on the surface of the
Earth, since we wish to discern gravity changes due to geologic - tectonic - volcanological processes. So far,
our calculations have treated the Earth as a static sphere. The fact that the Earth is not static, but rotates,
has an important impact on gravity at the surface. Centrifugal force,the same force you feel in a car turning
a sharp corner, works against gravitational acceleration and decreases the total acceleration at the surface,
especially at low latitudes. Similarly, the Earth is not a sphere, exactly, but an oblate ellipsoid of revolution
(fatter at the equatorial waistline). This also affects gravity at the surface because the surface of the Earth is
further from the center of mass (RE is larger) at the equator than at the poles and also because there is
more dense mantle and core material between the surface and the center of the Earth at the equator, due to
the fatter waistline. Altogether, there are three factors that change gravity at the surface due to the rotation
and shape of Earth, or other planets: centrifugal acceleration due to rotation, change in distance from the
center of mass, and overall change in mass distribution (more mass at the equator).
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Centrifugal acceleration

Centrifugal acceleration varies with distance from the geographic axis
of the Earth (r, and so with latitude, φ. For a spherical Earth, the
change in r with φ is:

r = RE cosφ

The change in gravity with latitude on spherical Earth can be
expressed in terms of latitude:

gφ = gpole − ω
2
RE cosφ

where ω is the angular frequency of rotation of the Earth,
ω = 2π/T , where T is the period of the earth’s rotation (24 hr).
This equation shows that for a spherical rotating planet, gravity is
maximum at the poles (r = 0) and is minimum at the equator.

Examples

What is the centrifugal acceleration
at the Earth’s equator?
Without going through the derivation:

a =
v2

r

v =
2π2r

T

a =
4π2r

T2

where:
a = centrifugal acceleration, r is
distance from the geographic axis of
rotation (the Earth’s radius at the
equator), and T is the rotation period
(24 hr). For the Earth at the equator,
centrifugal acceleration is about

a = 0.03m s−2, or about 3 Gal.
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Change in radius with latitude

Now consider the change in gravity due to the
shape of the Earth. This involves calculating the
change in gravity with change in Earth radius as a
function of latitude. The oblate ellipsoid can be
thought of as flattened:

f =
Requator − Rpole

Requator
.

The magnitude of flattening, f , is now very well
determined from observing artificial satellite orbits
around the Earth, and is fixed for the WGS84 ellipsoid
as f = 1/298.257223563. Newton first discussed
the flattening of the Earth, and estimated a value of
1/230. The radius of the Earth at a given latitude is
given by;

RE = Requator(1 − f sin
2
φ).

Again for the WGS84 ellipsoid,
Requator = 6378137.0m.

Examples

Using the WGS84 ellipsoid, the estimated radius of
the Earth at the equator is
Requator = 6378137.0m and at the pole is
Rpole = 6356752.31m. What is the difference in
gravity at the surface of spherical planets with Earth’s
mass and these two different radii?

gE =
GME

R2
E

gequator = 9.794319911m s−2

gpole = 9.861319102m s−2

This is about 7 Gal difference. Note that the actual
effect is less because the exact calculation is for
gravity on an oblate ellipsoid, accounting for the
redistribution of mass as well as radius. That is, the
extra Earth mass at the equator compared to the poles
decreases the overall difference in gravity. In reality,
the affect of rotation is larger than the affect of shape.
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large-scale variations in Gravity on Earth

To summarize, the Earth’s gravity field is primarily described by the gravitational attraction of a sphere, with
significant departures due to rotation, change in radius with latitude, and to a much lesser extent due to
tides (relative position of the sun and moon). Changes in gravity at the Earth’s surface are also related to
changes in elevation and related factors. Even when these factors are accounted for, variation in the gravity
field persists, although these differences are measured in the mGal range, rather than in the Gal range.

Note that this gravity map
was collected above the
Earth’s surface during the
Gravity Recovery and
Climate Experiment
(GRACE) mission. It is the
most accurate map yet of
Earth’s gravity field.

Gravity varies globally

The GRACE map shows
that gravity varies across
the globe, once the huge
effects of rotation and
Earth shape are accounted
for. These anomalies are
related to large-scale
differences in mass
distribution within the
Earth.
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Summary

Newton’s laws of motion describe the planetary-scale features of the Earth’s gravity field.

• Newton’s law of universal gravitation explains the gravitational force, and acceleration, that exists
between any two masses, including the Earth and any object in the “Earth’s gravity field”. The
gravity field due to the Earth, or other planets, can be described by the change in acceleration from
place to place. If only the magnitude of acceleration is shown, then the field is described as a scalar
field. If direction is shown, the field is described as a vector field. We define direction (vertical) in
terms of the orientation of the vector field of gravitational acceleration.

• The units of gravitational acceleration are usually mGal. 105 mGal = 1 ms−2. Note that a common
error in calculating gravity is to forget to covert MKS to mGal!

• Newton’s laws successfully describe large scale variations in gravity on the surface of Earth due to
(a) change in latitude (radius, rotation), (b) change in elevation, (c) tidal effects (position of Sun
and Moon).

• Gravity anomalies persist at a huge range of scales in the Earth, due to variations in the distribution
of mass.

Additional Resources: Read Blakely, Chapter 1, 3, 7
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End of Module Questions

1 Gravity changes at the surface of the Earth due to the position and mass of the sun and the moon.
Consider a point on Earth’s surface that has the moon directly overhead (lunar noon). In this
geometry, the Moon causes an upward acceleration, effectively decreasing the gravitational
acceleration at that point due to the Earth’s mass alone. Roughly 12 hr later, the Moon is exactly on
the opposite side of the Earth (lunar midnight) effectively increasing the gravitational acceleration at
the same point on the Earth’s surface due to the Earth’s mass alone. Calculate the change in
gravitational acceleration at the point (in mGal) between the lunar noon and lunar midnight.

Assume a spherical Earth of radius RE = 6.378 × 106 m, the distance from the center of the

Earth to the Moon is RM = 3.8 × 108 m and the lunar mass is 7.3 × 1022 kg.

2 Paleontological data and astrophysical models suggest there were about 423 days in one Earth-year,
600 million years ago. No data suggests the Earth’s orbit has changed, so the change is attributed to
tidal friction slowing the Earth’s rotation with time. What is the increase in gravity at the equator
from 600 Ma to the present due to this change in rotation, assuming no change in the Earth’s shape?
By extrapolation, the period of the Earth’s rotation around 4 billion years ago was 6 hr. What is the
difference in gravity at the equator due to this change in rotation? Express your answer in mGal.

3 Plot a graph showing three curves: of the change in gravity as a function of latitude due to change
in angular velocity, the change in gravity due to the flattening of the Earth, and the sum of these
two graphs. Discuss the plot, which factor has the largest affect on gravity? You can use any
method you wish to make this plot. A simple way to get started is using gnuplot (described in the
supplementary material).
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Plotting with gnuplot

A simple way to plot functions
is to use gnuplot (open-source,
freely available software, mostly
used by scientists using linux
systems). Here is an example
gnuplot code to plot a function
described in this module
(radius of the Earth as a
function of latitude).
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The entire code that generates this plot is on the next page
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Plotting with gnuplot

reset

set termoption dash

#equatorial radius (m), WGS84

Re = 6378137.0

#flattening

f = 1/298.25722356

#radius in km

r(x) = Re * (1-f*sin(x)*sin(x)) / 1000.0

# Axes label

set xlabel ’Latitude ’

set ylabel ’Earth Radius (km)’

# Axes ranges

set xrange [-pi/2:pi/2]

set yrange [6350:6380]

# Axes tics

set xtics (’90 S’ -pi/2, ’45 S’ -pi/4, 0, ’45 N’ pi/4, ’90 N’ pi/2 )

set ytics 5

set tics scale 0.75

set style fill transparent solid 0.15

set key Left

plot r(x) with filledcurve y1=0 lt rgb "gray0" notitle

set term pdf enhanced dashed

set output "Earth_radius.pdf"

replot
Gravity 1


	Objectives
	Newton's Law
	Gravity Units
	Gravity Variation
	Summary
	Questions
	supplementary material

