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Objectives for Week 4

• Learn about Gauss’s
law

• Excess Mass

• Divergence

• Gravity due to
simple shapes
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Gauss’s law

An equipotential surface, like the geoid, undulates
in shape because of mass heterogeneities. The
gravitational potential can be reformulated to reflect
the distribution of many masses:

U =
N∑
i=1

Ui =
N∑
i=1

−
Gmi

ri

where:
N is the number of individual masses,
mi is the ith mass, located at distance ri,
G is the gravitational constant.

In practice, individual masses inside the Earth are
volumes, V , of similar density, ρ. It is the density
contrast between masses that defines them. In the
limit:

U = −G
∫
V

ρdV

r

This integral is a key part of Gauss’s law, which
relates the total mass of an anomalous body to the
integrated gravity field produced by the body. The
mass distribution is described by the above equation.
How is the integrated gravity field calculated?

Consider any mass distribution (like the Earth); this
mass distribution can be completely contained by a
surface (like an equipotential surface). The sum of the
gravity field across the entire surface is:

∮
S
~g · ~ndA

The contour integral symbol is shorthand indicating
that the integral includes the entire surface area,
which is divided into small areas, dA. The unit
vector, ~n, is normal to the surface and directed
outward (away from the mass) at each dA.

mP

~n

~g
dA
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Gauss’s law

A physical analogy might help. Consider a well
pumping groundwater out of a thick saturated
sandstone. Imagine a hypothetical surface that
completely encloses the well; in a steady-state, all
groundwater pumped from the well must pass through
this surface. The total water pumped from the well in
any given time (say one second) is equal to the
amount of water passing through the hypothetical
enclosing surface in the same amount of time. The
“field” in this case is the velocity of water pulled
toward the well across the surface, the potential is the
pressure gradient that drives the water at this velocity,
and the contour integral yields the total flux of water
across the surface.

Suppose the sandstone aquifer is so uniform that a
spherical surface exists, all across which the

groundwater velocity is 2 m s−1 toward the well. The
surface area of this hypothetical sphere is 4πr2, so
the well must be pumping water at a rate of

8πr2 m3 s−1. The velocity of water integrated
across the entire enclosing spherical surface is equal to
the flux of water from the well, regardless of the value
of r.

For a point mass with the spherical enclosing surface
located at r, the solution to the integral is just the
surface area of the sphere multiplied by the gravity at
r:

∮
S
~g · ~ndA = −4πr

2GM

r2
= −4πG

∫
V
ρdV.

In other words, the integral of the gravity across the
entire enclosing surface is proportional to the mass
enclosed by the surface, regardless of the value of r.
This is Gauss’s law. It turns out to be applicable
regardless of the mass distribution within the enclosing
surface, or the shape of the enclosing surface.
Because we know G very well, the total mass can be
determined by measuring the gravity field, without
knowing anything about the mass distribution. From
satellites (e.g., GRACE) we can measure gravity
everywhere on a surface and so determine the mass of
the Earth, despite the fact that mass is
heterogeneously distributed in Earth. In fact, after
Cavendish estimated G, a big activity of geophysicists
was measuring g around the globe to improve
estimates of the Earth’s mass.
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Excess mass

Gauss’s law: ∮
S
~g · ~ndA = −4πGM

allows us to calculate the total excess mass that produces a gravity anomaly, regardless of the distribution of
the mass. Green found this solution to the excess mass within the Earth using a hemisphere for the
hypothetical surface, S. Assume the flat top of the hemisphere is the surface of the Earth (z = 0) The
surface integral can be divided into the flat top and the hemisphere. By assuming the radius of the
hemisphere is extremely large, some tricks are played with the limits of integration to simplify the problem.
The equation for the surface integral becomes:∮

S
~g · ~ndA =

∫
z=0

∫
g(x, y)dxdy +

∫ 2π

φ=0

∫ π
θ=π/2

g(r, θ)sinθdθdφ = 4πGM.

This reduces to ∫
z=0

∫
g(x, y)dxdy = 2πGM,

So the anomalous mass is:

M =
1

2πG

∫ ∞
−∞

∫ ∞
−∞

g(x, y)dxdy

In practice, the anomalous mass is found by numerically integrating the gridded gravity data across an area:

M =
1

2πG

N∑
i=1

M∑
j=1

∆g(x, y)∆x∆y

where ∆g(x, y) is the gravity anomaly, N an M are the number of grid points in the X and Y directions,
respectively, and ∆x and ∆y is the grid spacing in the X ad Y directions.
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Example excess mass calculation

Example

The excess mass on a gridded gravity map is:

M =
1

2πG

N∑
i=1

M∑
j=1

∆g(x, y)∆x∆y

where ∆g(x, y) is the gravity anomaly, N an M are the
number of grid points in the X ad Y directions,
respectively, and ∆x and ∆y is the grid spacing in the X
ad Y directions. For the grid shown, the “background”
gravity value is 0.2 mGal, so ∆g(x, y) is the difference
from 0.2 mGal. To calculate the excess mass for gravity
data:

1 interpolate the gravity data on to a regular grid

2 find the “background” gravity value

3 for each grid point, subtract the background value
and sum

4 multiply the sum by 1
2πG

∆x∆y

0.20 0.19 0.20 0.20 0.20

0.20 0.16 0.14 0.17 0.20

0.20 0.11 0.05 0.10 0.20

0.20 0.12 0.15 0.16 0.20

0.20 0.20 0.19 0.20 0.20
∆y = 1 km

∆x = 1 km

Prove to yourself that the excess mass for the
above grid of gravity data is approximately
M = −1.57× 1010 kg, with the values posted
next to each grid point given in mGals. The
negative mass indicates that mass is “missing”
and the gravity low is caused by the occurrence
of lower density material. If the anomaly were
caused by an air-filled cave system in limestone

(ρ = 2300 kg m−3), find the volume of the

cave system. (Ans = 6.8× 106 m3).
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Gravity inside a homogeneous planet

What is the gravity field inside a planet? Referring to the
figure at right, where RE is the radius of the planet, what
is the gravity at r (r < RE )? Assume the planet is of
homogeneous density, ρ. The the total mass of the planet
inside r is:

ME =
4

3
πρR

3
E , m =

4

3
πρr

3

so

m = M
r3

R3
E

Given Gauss’s law:

∮
S
~g · ~ndA = −4πGM,

−4πr
2
g = 4πGM

r3

R3
E

g = G
M

R3
E

r

so gravity varies linearly with r, and g → 0 as r → 0.

RE

r

The same approach works for finding gravity
outside a planet (r > RE ).

−4πr
2
g = 4πGM

g = G
M

r2
,

Outside the planet, gravity varies with 1/r2,
and g → 0 as r →∞.
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Gravity anomaly due to an infinite horizontal
cylinder

Estimate the gravity anomaly due to an infinite
horizontal cylinder using Gauss’s law:

∮
S
~g · ~ndA = −4πGM

Ml = πa
2
∆ρ

−2πrlg = −4πGMll

g =
2GMl

r
=

2Gπa2∆ρ

r

where Ml is the mass per unit length of the cylinder
and ∆ρ is the density contrast between the cylinder
and the surrounding rock. The trick in this case is to
realize that the “Gaussian” surface enclosing the
cylinder can be expressed in terms of surface area per
unit length along the cylinder, as can the mass per
unit length. This works if the cylinder is infinite, so
the ends are ignored.

The blue disk in this figure represents the hypothetical
Gaussian surface, of radius r. Because the vector of
gravity due to the cylinder is oriented toward the axis
of the cylinder in the plane of the disk, the surface
integral is circumference of the blue disk times its unit
thickness, l.

a

r

l

A surprising amount of geology can be investigated
with the horizontal cylinder model, not just tunnels
and lava tubes. Density contrasts associated with folds
(anticline and syncline pairs) are sometimes modeled
by horizontal cylinders. Long linear basins are modeled
this way as a first approximation, with the surface of
the basin corresponding to the top of the cylinder.
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Gravity anomaly due to an infinite horizontal slab

What is the gravity anomaly due to an infinite
horizontal slab, a horizontal unit that is of such great
lateral extent it can be considered to be infinite?

∮
S
~g · ~ndA = −4πGM

MS = S∆ρh

−2Sg = −4πGMS

g = 2πG∆ρh

where S is the unit surface area of the slab, and MS
is the mass of the slab per unit surface area. The
“Gaussian” surface enclosing the slab is just two times
the surface area. One part of the hypothetical
“Gaussian” surface is shown as the blue plate above
the slab, the other part is the blue plate below the
slab. Because the slab is infinite, the edges of the
enclosing surface are not considered; only the surface
above and below the slab need be considered.

h

The gravity anomaly due to the infinite horizontal slab
does not depend on the distance, r from the slab. We
can think of this in terms of the divergence of the
gravity field, which we can calculate in terms r:

∇ · ~g =
∂~g

∂r
r̂

=
∂

∂r
(2πG∆ρh)r̂

= 0

Physically, this means that the flux of gravity through
the surface does not change with distance. So the
gravity anomaly due to the infinite slab is the same
10 m from the slab as it is 1000 m away.

Gravity 4



Gravity 4

Objectives

Gauss’s law

Excess Mass

Some Simple
Shapes

Divergence

More Simple
Shapes

EOMA

Calculating Divergence

We can see from the infinite slab example that
divergence is an important topic used to understand
the shape of a vector field, like the gravity field.
Consider the vector field:

~v = 2̂i + 2̂j.

The divergence is the sum of the first derivative in the
x direction and the first derivative in the y direction.
The divergence of ~v is

∇ · ~v = 2
∂

∂x
+ 2

∂

∂y

= 0 + 0

The divergence is 0 because the first derivative of the
vector field is zero in both the x or z directions. This
is exactly the same as the gravity field for an infinite
slab:

∇ · ~g = 0
∂

∂x
+ 2πG∆ρh

∂

∂z

= 0 + 0

−20 −10 0 10 20
−20

−10

0

10

20

~g = 2̂i+ 2̂j, ∇ · ~g = 0

The gravity field does not diverge with distance from
the slab because the magnitude of gravity does not
depend on the distance (say its depth, z). The
concept of an infinite slab is actually useful in making
elevation corrections to gravity data, so such infinite
plates are sometimes called Bouguer slabs, after Pierre
Bouguer.

Gravity 4



Gravity 4

Objectives

Gauss’s law

Excess Mass

Some Simple
Shapes

Divergence

More Simple
Shapes

EOMA

Divergence of flowing magma

Magma rising in vertical volcano conduit is a good example of positive
divergence in one dimension. The magma is rising because of the pressure
gradient along the conduit. As that magma rises, bubbles nucleate and
grow. These bubbles take up extra volume, so the magma must accelerate
toward the surface. Suppose the velocity of the magma as a function of
distance along the conduit is:

~v = e
x

where x is the distance along the conduit. Then:

∇ · ~v = e
x ∂

∂x
= e

x

Think of a small slice of the cross sectional area of the conduit, dx. The
velocity of the magma is higher leaving dx than entering dx, because of
bubble nucleation and expansion within dx. Positive divergence in this
example means that the density of the mixture is less with height. The
further along the conduit, the larger x, the larger the divergence, meaning
this expansion process accelerates toward the surface.

In contrast, if the magma is volatile free and only the pressure gradient
drives the magma upward, then ~v is constant along the conduit and:

∇ · ~v = 0

~v

x

dx
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A negatively divergent field

Consider a more complicated vector field:

~v =
1

x2 + y2
î +

[
1

x2 + y2
−

1

5y

]
ĵ

Then:

∇ · ~v =
1

x2 + y2

∂

∂x
+

[
1

x2 + y2
−

1

5y

]
∂

∂y

Prove to yourself that the divergence is:

∇ · ~v =
1

5y2
−

2(x + y)

(x2 + y2)2

If you evaluate the divergence at point (1, 1), you will
find ∇ · ~v = −4/5; the divergence is much smaller,
but still negative at point (3, 3). You can see from
the plot of this vector field that the vectors get smaller
in the direction of flow. If this field describes velocity
of air, the air gets more dense in the direction of flow.
This pattern is characteristic of a shock wave (e.g., an
explosion). Shock waves are negatively divergent. The
effect (e.g., air getting dense) is much more
pronounced at point (1, 1) than at point (3, 3).

1 1.5 2 2.5 3
1

1.5

2

2.5

3
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Divergence of a gravity field

Example

Recall from Module 3 that the vertical component of
the gravity field associated with a point mass, mP is

gz =
GmP z√
x2 + z2

Then you can show that:

∇ · ~g =
GmP x√
x2 + z2

∂

∂x
+

GmP z√
x2 + z2

∂

∂z

=
GmP√
x2 + z2

For a point source located at (0, 0), the divergence is
larger closer to the origin and decreases with distance,
but is always positive (the gravity field is divergent).
One way to compare gravity anomalies is to consider
their divergence. A broad gravity anomaly will be less
strongly divergence that a less broad gravity anomaly.

0 1 2 3 4 5
0

1

2

3

4

5
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Gravity anomaly due to a buried sphere

It is possible to calculate the exact gravity
anomaly due to a wide variety of simple shapes. The
simplified geometry of these shapes (spheres, rods,
plates) simplifies the analytical solution to find their
gravity anomalies (e.g., application of Gauss’s law). A
surprisingly large number of natural gravity anomalies
can be assessed by comparing them to the gravity
anomalies of simple shapes. A general form from the
vertical component of the gravity anomaly due to a
buried mass is:

gz = G

∫
dm

r2
cos θ

Note that the vertical component is defined by the
Earth’s gravity field. It is assumed that the deflection
of the equipotential surface (and deflection of the
vertical) can be neglected. That is, the anomalous
mass is very small compared to the magnitude of the
Earth’s field. For a sphere with the geometry shown:

gz = gr cos θ

=
GMz

r3

=
4πG∆ρa3

3

z

(x2 + z2)3/2

O

S

a

z r

x

gz

θ

ρ2ρ1

∆ρ = ρ1 − ρ2

This figure shows the gravity anomaly at point S due
to a sphere located entirely below the surface at point
O (z > a). The Earth’s surface is indicated by the
thick pale blue line.
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Gravity anomaly due to a thin vertical rod

Find the gravity anomaly due to a thin vertical rod. The rod is
“thin” so that it can be assumed the cross sectional area of the
rod is not important (gravity due to one edge of the rod is not
considered separately from gravity on the other edge).

gz = GA∆ρ

∫ L
0

dl

r2
cos θ

where A is the cross sectional area of the rod.

gz = GA∆ρ

∫ L
0

(z + l)dl[
x2 + (z + l)2

]1/2 (x2 + (z + l)2)

u = (z + l)
2

du = 2(z + l)dl

gz = GA∆ρ

∫
du[

x2 + u
]3/2

= −GA∆ρ
[
x
2

+ (z + l)
2
]−1/2

|L0

= GA∆ρ

[
1√

x2 + z2
−

1√
x2 + (z + L)2

]

z

r

x

L

dl

gzθ

ρ2ρ1

∆ρ = ρ1 − ρ2

Prove to yourself that as L→∞, the
gravity anomaly becomes

gz =
GA∆ρ[√
x2 + z2

]

Gravity 4



Gravity 4

Objectives

Gauss’s law

Excess Mass

Some Simple
Shapes

Divergence

More Simple
Shapes

EOMA

Gravity anomaly due to a finite horizontal unit

The gravity anomaly due to a horizontal unit of finite extent in the x direction is:

gz = 2G∆ρh

(
π + tan

−1
[
x

z

]
+ tan

−1
[
l− x
z

])

where:
z is the depth to the top of the horizontal unit

x is the horizontal offset from the edge of the unit

h is the thickness of the offset horizontal unit

l is the length of the horizontal unit

∆ρ is the density contrast between the unit and
surrounding rock

G is the gravitational constant.

This expression can also be written as:

gz = 2G∆ρh [α + β] = 2G∆ρh [θ]

Note that the horizontal unit is assumed to extend
infinitely in the y direction (in and out of the x− z
plane).

z

h

x l − x

l

θ

α β

ρ1 ρ2

∆ρ = ρ1 − ρ2

gz

x = 0

Prove to yourself that as l→∞:

gz = 2G∆ρh

(
π

2
+ tan

−1
[
x

z

])

This simple shape is sometimes referred to as a
semi-infinite slab.
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Gravity anomaly due to a vertical fault

The gravity anomaly due to an offset of a horizontal unit across a vertical fault is:

gz = 2G∆ρh

(
π + tan

−1
[
x

z1

]
− tan−1

[
x

z2

])

where:
z1 and z2 are depths to the top of the faulted
horizontal unit

x is the horizontal offset from the intersection of the
fault plane with the surface

h is the thickness of the offset horizontal unit

∆ρ is the density contrast between the faulted unit
and surrounding rock

G is the gravitational constant.

This expression can also be written as:

gz = 2G∆ρh [θ1 + θ2]

As before, the faulted horizontal unit is assumed to
extend infinitely in the y direction (in and out of the
x− z plane). The faulted horizontal unit also extends
infinitely in the x direction, away from the fault.

z2

z1

x

h

θ1

θ2

ρ1

ρ1

ρ2

∆ρ = ρ1 − ρ2

gz

x = 0

Prove to yourself that:

θ1 =
π

2
+ tan

−1 x

z1

θ2 =
π

2
− tan

−1 x

z2
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Gravity anomaly due to an offset unit across a
dipping fault

The gravity anomaly due to an offset horizontal unit across a dipping fault is:

gz = 2G∆ρh

(
π + tan

−1
[
x

z1
+ cot(α)

]
− tan−1

[
x

z2
+ cot(α)

])

where:

α is the dip of the fault

z1 and z2 are depths to the top of the faulted
horizontal unit in the hanging wall and footwall of the
fault, respectively.

x is the horizontal offset from the intersection of the
fault plane with the surface

h is the thickness of the horizontal unit

∆ρ is the density contrast between the faulted unit
and surrounding rock

G is the gravitational constant.

Note that the dipping fault, normal in this case,
creates lateral offset of the faulted unit. The faulted
edges of the unit remain square, rather than reflecting
the dip of the fault.

z2

z1

h

α

ρ1

ρ1

ρ2

∆ρ = ρ1 − ρ2

gz

x = 0

As before, the faulted horizontal unit is assumed to
extend infinitely in the y direction (in and out of the
x− z plane). The faulted horizontal unit also extends
infinitely in the x direction, away from the fault.
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1 In her paper on the gravity anomaly at Medicine Lake volcano, Carol Finn estimates that excess

mass associated with a positive gravity anomaly at the volcano to be approximately 2× 1017 g.

Make this excess mass calculation yourself and compare your result to the one found by Finn and

colleagues. Solve for the excess mass in the following steps:

• Select the area of the anomaly and plot this map using GMT and the script provided
(xcess mass.pl). This might be very close to the area of the zoomed in map you prepared as
part of Module 2. You will need to change values for these variables to zoom in: $west,
$east, $south, $north, $tick int (tick mark interval), $map scale, $min and $max (min and
max gravity values colored on the map), $cint (contour interval of map colors),
$scale anot int (to adjust the label numbers on the color bar). Note that the map plots in
UTM corrdinates, so the values given are in meters.

• Once you have the anomaly map plotted you need to select a background gravity value for
the plot. The excess mass will be associated with departure from this value. Note that the
background value does not need to be constant. For example, Finn and colleagues used a
regional trend as the background value. In this exercise, using xcess mass.pl, the background
gravity value must be constant. Adjust the variable $gravity threshold in xcess mass.pl and
re-run the code to get the excess mass.

• Review the PERL code and compare to the module excess mass example. Describe the steps
taken in the code to get from the input data file to the excess mass estimate.

• Write a description of your calculation and make your comparison with the Finn results.
What do you think accounts for differences in your estimate?

Gravity 4



Gravity 4

Objectives

Gauss’s law

Excess Mass

Some Simple
Shapes

Divergence

More Simple
Shapes

EOMA

EOMA

2 Skull cave, lava beds national monument, is part of a lava tube system that extends along the lava
flow for about 11 km. Where this picture was taken, the cave floor is about 35 m deep and the cave
diameter is about 28 m. What is the expected gravity anomaly across Skull cave? Use a simple
shape estimate to calculate the change in gravity across the cave. Discuss your assumptions and
your answer. If you planned to collect a gravity profile across Skull cave, how would you plan to
space your gravity readings?
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3 Adam Springer (2008, Constraining basin geometry and fault kinematics on the Santo Tomás
segment of the Agua Blanca Fault through a combined geophysical and structural study,
Unpublished M.S. Thesis, University of South Florida, http://scholarcommons.usf.edu/etd/1779/),
collected gravity data across a basin near Ensenada, Mexico that was formed as a pull-apart along a
prominent strike-slip fault system. His gravity model is shown in the following figure. Note the
density contrast between the basin-filling sediments and the surrounding basement rock is

approximately −720 kg m−3. Ignoring the plutons in Springer’s model, estimate the gravity
anomaly due to the basin-filling sediments using a simple shape. Draw your expected profile of
gravity variation across the basin. Assume the basin length is much more than its width (the basin is
“infinite” perpendicular to the profile. Discuss your answer. What re your assumptions? What is the
effect of features not accounted for in your simple model?
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4 Gravity anomalies occur at continental margins. At passive margins, where the continental crust
transitions to ocean crust without a plate boundary, gravity anomalies are caused by thinning of the
crust, change in the density of the crust from continent to ocean, and the presence of the ocean
itself. The following figure accounts for change in crustal thickness and the presence of the ocean in
a simplified way (not drawn to scale). Calculate the gravity profile from continent to ocean,
assuming this model is correct (Hint: make the depth to the “top” of the ocean slightly greater than
0, eg., z = 1 m). Discuss how you made this calculation and your assumptions. Compare with the
gravity map of Florida in Module 2.

ρm = 3300 kgm−3

ρw = 1000 kgm−3

ρc = 2700 kgm−3

35 km

15 km

1km

200 km
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5 Lots of geologic features can be modeled using simple shapes, as illustrated in questions 2–4. Find a
geologic feature (that exists!) and model its expected gravity anomaly using a simple shape or
combination of simple shapes. Possible features vary from planetary in scale to extremely small-scale
features. Use the simple shape formulae given in the Module or find other examples of simple shapes
in the literature.

Please describe the geologic feature, sketch the simple shape model you develop to estimate its
gravity anomaly, calculate the anomaly - showing the script you use - and discuss your results and
assumptions.
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