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• Bulk, true, and
natural density

• Density of the Earth
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measurements
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Density and compounds

Densities of rocks near the surface of the Earth
range from about 800 kg m−3–3000 kg m−3, and
depend on factors like composition, crystallinity, void
fraction and water saturation. Often the “true
density” refers to the mass per unit volume with no
voids present. The “bulk density” refers to mass per
unit volume of a dry rock, including void space. The
“natural density” or “saturated bulk density” refers to
the mass per unit volume where the void space is filled
(saturated) with water or another fluid.

The true density can be estimated from the
components of the rock, if the molecular formulae for
the components are known, together with their
volume fraction:

ρ =
N∑

i=1

XiMi

Vi

where: Xi is the mole fraction of component i and is
dimensionless. Mi is the molecular mass (also called
the molar mass) of component i and is usually
expressed in units of g / mol. Vi is the fractional
volume of component i and is usually expressed in
units of m3 / mol. N is the total number of
components in the rock.

For each component, the effect of pressure and
temperature on density can be estimated based on the
isothermal compressibility and coefficient of thermal
expansion, respectively.

Vi(X,P, T ) = V̄i +
∂V̄i

∂P
P +

∂V̄i

∂T
(T − 1673)

where:

V̄i is the partial molar volume of component i at
0.0001 GPa pressure and 1673 K

∂V̄i
∂P

is the coefficient of isothermal compressibility of

component i (how the molar volume changes with

pressure at constant temperature) (m3/mol GPa).

∂V̄i
∂T

is the coefficient of thermal expansion of

component i (how the molar volume changes with

temperature at constant pressure) (m3/mol K).
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Macroscopic density

At a macroscopic level, one can characterize the true
density of a rock from its mineral, glass, lithic or
organic constituents. That is:

ρ =
N∑

i=1

ρivi

where ρi and vi are the density and volume fraction
of phase i, respectively.

Example

Consider a dense basaltic rock with a modal mineral
composition determined by point count of:

Mineral volume fraction
plagioclase 0.45
pyroxene 0.4

olivine 0.04
opaques 0.08

other 0.03

Where opaque minerals are some combination of
magnetite and ilmenite and other is likely alteration
(clay) minerals. Prove to yourself that the true density

of this rock is approximately 3150 kg m−3.

Phase Density (kg m−3)
plagioclase 2690
K-feldspar 2500–2600

quartz 2650
pyroxene 3300–3360

olivine 3320
calcite 2710

magnetite 4890
ilmenite 4790

clay minerals 2500–2600
basaltic glass 2300 – 2700

obsidian 2300–2600
anthracite 1300–1500

bitumin 1100 –1300

Some common mineral, glass and organic constituents
of rocks and their common densities. Note that these
densities can vary substantially depending on exact
composition.

Density units

Density is reported here in SI units (MKS). Often in

geophysics, density is reported as g cm−3 because
gravity is normally reported in mGal, where a Gal is

1 cm s−2. Just remember to do the unit conversion!
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Density and porosity

Porosity, of course, changes the bulk density of
most rocks. Porosity includes any void, such as
intergranular space, fracture, or bubble. If the pore
space is dry then, neglecting the density of air:

ρbulk = ρ(1 − vp)

where ρbulk is the bulk density of the dry porous
rock, ρ is the “true density”, which can be estimated
from the constituents without considering pore space,
and vp is the volume fraction of pore space.

Example

Suppose the basalt discussed on the previous slide

(ρ = 3150 kg m−3) has a porosity of 30%. Prove to
yourself that the bulk density of this rock is

approximately ρbulk = 2200 kg m−3.

Lithology fractional porosity
Unconsolidated deposits

gravel 0.25–0.4
sand 0.25 – 0.5
silt 0.35 – 0.5
clay 0.4 – 0.7

tephra 0.4 – 0.75
Rocks

dense crystalline rock 0–0.05
fractured crystalline rock 0–0.1

shale 0–0.1
limestone 0–0.3
sandstone 0.05–0.3

karst limestone 0.25–0.6
fractured basalt 0–0.5
pahoehoe lava 0.2 –0.5

This table makes it quite clear that the density of
rocks in the near-surface environment is strongly
controlled by their porosities, which are quite variable
even for a given lithology.

Gravity and lithology

Primarily because porosity is quite variable, there is a
weak correlation between gravity anomalies and
specific lithologies.
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Saturated bulk density

Density and gravity change with water saturation. One function of gravity data is to monitor regional
groundwater and surface water levels – by equating the change in gravity with change in water distribution,
essentially the mass of water present in the near-surface. These maps show GRACE derived water data for
the Amazon basin, indicating low water levels throughout the basin compared to average conditions. The
huge advantage of GRACE acquisition is that repeated gravity maps are made of the same area and so
differences in water level can be tracked.

The density of a saturated or partially saturated
rock is:

ρsat = ρ(1 − vp) + ρfvf

where ρf is the density of the fluid and vf is the
volume fraction of fluid. Note that vp ≥ vf .

Example

Suppose a quartz sand (2650 kg m−3) has 30%
porosity and is saturated with a hydrothermal brine

(1125 kg m−3). Prove to yourself that the density of

this saturated rock is 2192.5 kg m−3.
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Change in density with depth in basins

Given the strong relationship between density and
porosity (saturated or unsaturated), it is not surprising
that the densities of some lithologies change
significantly with depth. This is most dramatic in a
sedimentary basin, where the sediments at the surface
are likely unconsolidated and lithify with depth due to
compaction and diagenesis. The change in density
with depth in sedimentary basins is crucial to
understand in interpreting gravity data, especially
because so any economic and academic applications of
gravity methods involve understanding the geometries
and depths of sedimentary basins.

Various authors have developed functional
relationships to model the expected change in basin
density contrast with depth. One model is:

∆ρ(z) =
∆ρ3

o

(βz − ∆ρo)2

where: ∆ρ(z) is the change in density contrast with
depth, ∆ρo is the density contrast at the surface, β
is an attenuation factor that governs the change in
density with depth and z is depth.Typical values used
by Chakravarthi and Sundararajan (2007) are

∆ρo = −600 kg m−3, and

β =100–200 kg m−3 km−1.

Another model for the change in density contrast
with depth in a sedimentary basin is the exponential
model, used by Garcia-Abdeslem and others:

∆ρ(z) = ∆ρo exp(−αz)

with α = 0.5, approximately, and z is depth in
kilometers.
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The power law model of Chakravarthi and
Sundararajan (2007) is shown in blue and the
exponential model in red. Clearly these models can
produce similar results. Ideally, either model is fit to
actual measurements of the change in density contrast
with depth.
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Role of overpressure in basin porosity and density

Basin porosity or density is often observed to
change in a roughly exponential or power-law fashion
with depth. Nevertheless, several features of basins
can cause significant deviation from this general rule.
For example, there are abrupt changes in lithologies
with depth in some basins.

In deep sedimentary basins, overpressure of pore fluids
at depth can lead to increased porosity with depth.
High pore pressure can occur where porous and
permeable water-filled sediments are buried by low
permeability or impermeable sediment, such as clay,
trapping fluids in an otherwise porous sedimentary
section. The pore pressure in such sedimentary
sections increases with deeper burial. High pore
pressure can lead to an “under-compacted” zone, with
relatively high porosity and low density. This is a
common situation in the Gulf of Mexico, where
sediments can be buried rapidly by relatively
impermeable clays.

Another source of high pore pressure, and relatively
high porosity and low density at depth, occurs in
geothermal systems, where fluids can be heated,
expand, and increase pore pressure.

These Gulf of Mexico profiles show the change in
porosity with depth in a section dominated by shale
and be sandstone. The excess pore pressure
associated with impermeable horizons, here labeled
the top of the geopressure zone, causes abrupt
decrease in density with depth.
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Change in density with depth in the lithosphere

Many factors control the change in density with
depth in the lithosphere, including change in
composition, temperature and pressure. We can
characterize the change in density with pressure and
temperature in terms of compressibility and thermal
expansion, respectively. These are related to density
as:

α = −
1

ρ

∂ρ

∂T
, β =

1

ρ

∂ρ

∂P

Where α is the coefficient of thermal expansion and β
is the compressibility. Gerya (2010) gives a simplified
equation of state for dependence of lithosphere density
on pressure and temperature conditions as:

ρ = ρr exp [β(P − Pr) − α(T − Tr)]

where ρr , Pr , and Tr are the reference density (e.g.,

2700 kg m−3), pressure (e.g.,105 Pa) and
temperature (e.g., 298 K), respectively. This equation
is a simplification because the compressibility and
coefficient of thermal expansion themselves depend on
pressure and temperature, and because the pressure,
P , depends on the density of the overlying rocks,
which is variable with depth. Nevertheless, the
equation gives a good sense of the variation in density
within the crust as a function of P

and T conditions. The three curves are plotted by
solving the equation of state at left, assuming a

coefficient of thermal expansion of 5 × 10−5 K−1

and compressibility of 5 × 10−11 Pa−1.
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The three plotted lines are change in density with

depth for a geothermal gradient of 35◦C km−1

(green), 30◦C km−1 (red), and 25◦C km−1 (blue).
For relatively high geothermal gradients, the equation
of state predicts a decrease in density with depth
because the coefficient of thermal expansion
dominates. For a low geothermal gradient, the
equation of state predicts an increase in density with
depth, because compressibility dominates.
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Seismic velocity and density

From early on, models of the change in density
with depth for terrestrial planets have relied on the
relationship between seismic velocity and density (e.g.,
Jeffreys, 1937). Compressional (Vp) and shear (Vs)
wave velocities are:

Vp =

[
k + 4/3µ

ρ

]1/2

Vs =

[
µ

ρ

]1/2

where k is the bulk modulus, and µ is the shear
modulus. Solving these two equations for µ and
equating them yields:

ρ =
k

V 2
p − 4

3
V 2
s

The direct application of this relationship to the Earth
is hampered by several factors, such as an
approximately power law relationship between the bulk
modulus and density, and effect of numerous other
factors, such as effect of temperature, presence of
fluids, and the like on seismic wave velocity.

This relationship is well supported by the Drake-Nafe
curve, which is an empirical relationship between
measured compressional wave velocity and measured
density. Other authors have derived similar
relationships, all of which have considerable
uncertainty, summarized by Brocher (2005). In
graphical form:

The filled circles show handpicked values by Brocher
from the curve published by Ludwig et al. (1970).
The solid line is the Nafe–Drake curve, a polynomial
regression to these picks and is the preferred density
versus Vp relation. See Brocher (2005) for the
polynomial equations used to plot these curves.
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Density of the whole Earth

For the whole Earth, we can write the change in density with radius as:

dρ

dr
=

∂ρ

∂P

dP

dr
+
∂ρ

∂T

dT

dr
+
∂ρ

∂φ

dφ

dr
+
∂ρ

∂c

dc

dr

that is, density is a function of pressure (P ), temperature (T ), mineral phase (φ) and composition (c).
Porosity is ignored for the deep Earth and is assumed to approach zero in the lower crust.

Understanding the density structure of the Earth is a
matter of understanding the change in pressure,
temperature, mineral phase and composition as a
function of depth.The preliminary reference Earth
model (PREM) of Dziewonski and Anderson (1981)
attempts to take these factors into account drawing
on a wide array of geophysical, mineral physics and
geochemical data. Earth density (red curve) varies in
a complex way with depth. Significant jumps can be
seen within the lithosphere and across the core–mantle
boundary (3480 km) and to a lesser extent across the
outer–inner core boundary (1221 km) due to changes
in composition and phase. With this density curve, we
can now predict the Earth’s gravity (blue curve)
accurately with depth. Because of these density
changes, gravity does not decrease linearly with depth,
as we would expect with a homogeneous Earth, but
reaches a maximum near the core–mantle boundary.
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Example

Prove to yourself that gravitational acceleration at the
core–mantle boundary (r = 3480 km) is about
1060 Gal, for an average core density of

10900 kg m−3.
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Density measurement of rock samples

Archimedes’ Principle can be used to determine
the density of rock samples. Buoyancy force arises
because of pressure increases with depth and because
pressure acts on all sides of a submerged object, such
as a rock in a tank of water. The buoyancy force is
equal to the weight of the fluid displaced by the
object:

Fb = ρfVrg

where ρf is the density of the fluid, Vr is the volume
of the rock, and g is gravity. With some algebraic
substitution, this can be solved for the density of the
rock:

ρr =
Wa

Wa −Wf

ρf

where Wa and Wf are the weight of the sample in
air and fluid (water), respectively, and ρf is the
density of the fluid.

In practice, a sample is weighed by suspending it from
a scale, then submerged fully and weighed in water, to
determine its density. This usually gives a bulk density
(unsaturated) because air remains in the void space.
To assure this, samples are often dried in a low
temperature oven and very porous samples are
covered in paraffin wax to seal the pores. Usually a
large number of samples (10 –30) are collected from
each formation in a field area to constrain variation in
the formation bulk density.

A rock submerged in water or another fluid
experiences buoyancy force. Pressure on the object
(illustrated schematically by the black arrows) is
greater at depth in the container than at shallow
depth (P = ρgh, where h is depth in the container).
The greater pressure at depth results in upward force
on the rock, decreasing its weight in water.
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The Nettleton Method

L. L. Nettleton, working in the 1930s, realized
that in an area is homogeneous in density, no Bouguer
anomaly variations should result after data reduction
of a gravity survey carried out over a topographic
feature. Therefore, gravity readings collected across
such topography can be used to estimate the bulk
density, or saturated bulk density, of the uniform
lithology in the survey area. The Bouguer density that
causes the minimum correlation between topography
and gravity is the best estimate of the bulk or
saturated formation density. His method involves
collection of gravity readings across gently varying
topography – the gentle topography minimizes
uncertainties associated with terrain corrections made
in steep topography. Some topography is required to
see the variation in gravity with elevation and to find
the density that minimizes the correlation.
Uncertainty in the method occurs because the geology
may not be homogeneous, or there may be regional
gravity gradients that obscure the correlation.

This gravity survey done by Magnús Guŏmundson and
Rémy Villeneve over a small hyaloclastite ridge near
Reykjavik, Iceland, illustrates the method. The map
shows the position of gravity readings collected across
a hill. The gravity data are processed using different
Bouguer densities to search for the minimum
correlation with topography (the set of curves at
right).

In this case they found low correlation for Bouguer

densities between 2100–2600 kg m−3, with lowest

correlation around 2500 kg m−3.
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The Parasnis Method

D. S. Parasnis expanded on the Nettleton
method. He realized the linear equation of the
Bouguer anomaly formula can be rearranged such that
the slope of the line is the density, given a
homogeneous terrain:

gL − gr + dgFA = dgB − dgTc

where gL is the latitude corrected gravity, gr is the
reference gravity, usually gravity measured at a base
station, dgFA is the free air correction, dgB is the
Bouguer correction, dgTc is the terrain correction.
To implement the Parasnis method, let:

x = 2πGh−
Tc

ρTc

y = gL − gr + 0.3086h

where h is the height difference between the reference
gravity station, gr , and the latitude-corrected gravity
station gL, Tc is the terrain correction, and ρTc is
the initial density used in the terrain correction. Note
the units of x are mGal/density and the units of y are
mGal, meaning the slope of the line through a set of
x, y points is the density. A set of x, y points
calculated using these equations for the Guŏmundson
and Villeneve data discussed on the previous slide is
plotted at right.

Example

Using a reference gravity value of 16.1 mGal, reference
elevation of 86.9 m, and Tc = 0, calculate the x, y
pair for the Parasnis density model, for a gravity
station: gL = −18.27 mGal, elevation = 243.91 m.
Prove to yourself that for this gravity station,
x = 0.00658, y = 14.08. For the Iceland data

shown, the density is ρ = 2131 ± 125 kg m−3 after
a line is fit to all of the x, y pairs.
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Additional Reading

The book by Hinze et al. (2013) has an excellent overview of density and its role in geophysical exploration.
Gerya (2010) has an excellent introductory discussion of the equation of state for density as a function of
pressure and temperature in the Earth. This discussion is expanded upon in Anderson (1989) and Anderson
(2007).

• Anderson, D. L. (2007). New theory of the Earth. Cambridge University Press.

• Anderson, D. L. (1989). Theory of the Earth. Cambridge University Press.

• Gerya, T. (2010). Introduction to numerical geodynamic modeling. Cambridge University Press.

• Hinze, W. J., von Frese, R. R., & Saad, A. H. (2013). Gravity and Magnetic Exploration: Principles,
Practices, and Applications. Cambridge University Press.

Additional key references for this module are:

• Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth’s
crust. Bulletin of the Seismological Society of America, 95(6), 2081–2092.

• Chai, Y., & Hinze, W. J. (1988). Gravity inversion of an interface above which the density contrast
varies exponentially with depth. Geophysics, 53(6), 837–845.

• Chakravarthi, V., & Sundararajan, N. (2007). 3D gravity inversion of basement relief – A
depth-dependent density approach. Geophysics, 72(2), I23–I32.

• Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the
Earth and Planetary Interiors, 25(4), 297–356.

• Emerson D.W. (1990) Notes on mass properties of rocks: density, porosity, permeability. Exploration
Geophysics 21 , 209–216.

• Garcia–Abdeslem, J. (1992). Gravitational attraction of a rectangular prism with depth-dependent
density. Geophysics, 57(3), 470–473.

• Jeffreys, H. (1937). The density distributions in the inner planets. Geophysical Journal International,
4(s1), 62–71.
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End of Module Assignment

1 A limestone karst aquifer has 30% porosity. In the dry season the water table is located at 20 m
depth. In the wet season the water table is located at 2 m depth. (1) What is the change in density
of this rock from unsaturated to saturated conditions? (2) What is the expected change in gravity at
a station located in the middle of the karst aquifer from the dry season to the wet season, for the
given water table depths. Explain your model and assumptions.

2 Brocher (2005) published a polynomial form of the Drake–Nafe curve for sediments and sedimentary
rocks:

ρ = 1.6612Vp − 0.4721V
2
p + 0.0671V

3
p − 0.0043V

4
p + 0.000106V

5
p , 1.5 < Vp < 6.1

where Vp is in km s−1 and ρ is in g cm−3. Note that although this relation appears to be quite
precise, in reality there is huge scatter in this relationship in reality. Assume a basin is characterized
by a linear change in P-wave velocity with depth (Vp = 1.5 + 0.5z, 0 < z < 5 km). Use the
polynomial to estimate the change in density with depth and the density contrast between basin
sediments and the surrounding bedrock, as a function of depth (density contrast between the basin
and the bedrock at 5 km is zero). Graph your results and provide a brief explanation of the plot.
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5 The following table contains gravity and elevation data collected across a hill. Estimate the density
of the hill using the Parasnis’ variation on the Nettleton method, by fitting a line to the calculated x
and y values derived from the gravity data. Some gravity reductions have already been done, so you
will use these equations and regress on x and y to find the density:

x = 2πGh−
Tc

ρTc

y = gs − gr + 0.3086h

where h is the relative elevation, Tc is the terrain correction, ρTc = 2000 kg m−3 is the density
used in the terrain correction, gs is the station gravity, gr is the reference gravity (use the base
station), G is the gravitational constant.

Station ID relative gravity (mGal) relative elevation (m) terrain correction (mGal)
base 100.00 0 0.00
sta1 91.67 3.11 6.4
sta2 90.15 6.28 7.12
sta3 90.41 13.44 5.66
sta4 92.92 21.95 2.10
sta5 93.43 25.94 1.00
sta6 83.94 31.00 8.0
sta7 84.92 27.16 7.85
sta8 90.78 11.80 5.65
sta9 94.1 6.46 3.8

sta10 96.66 4.75 1.95
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