Gravity anomaly due to a thin vertical rod

Calculate the gravity anomaly due to a thin vertical rod

Introduction

Find the gravity anomaly due to a thin vertical rod. The rod is thin so that it can be assumed the cross sectional area of the rod is not important (gravity due to one edge of the rod is not considered separately from gravity on the other edge). Rather, mass is considered per unit length of the rod.

[Top]

Mathematical model

The gravity anomaly due to a thin vertical rod can be calculated using the following equation, $$g_z = G A \Delta \rho \int_0^L \frac{dl}{r^2} \cos \theta$$ where,

  • $A$ is the cross sectional area of the rod
  • $G$ is the gravitational constant
  • $\Delta \rho$ is the density contrast between the rod and the surrounding medium (surrounding rock)
  • $L$ is the length of the rod
  • $r$ is the distance from the measurement point to the center of segment $dl$
  • $\theta$ is the angle of $r$ wrt vertical.

Based on the geometry illustrated in this figure,

thin rod
the vertical component of the gravity anomaly, $g_z$, can be calculated by, \begin{align} g_z & = G A \Delta \rho \int_{0}^{L} \frac{(z + l)dl}{\left [x^2 + (z+l)^2 \right ]^{1/2} (x^2 + (z+l)^2)}\\ u & = (z+l)^2\\ du & = 2(z+l) dl\\ g_z & = G A \Delta \rho \int \frac{du}{\left [x^2 + u \right ]^{3/2}}\\ g_z & = -G A \Delta \rho \left [x^2 + (z+l)^2 \right ]^{-1/2} |_0^L\\ g_z & = G A \Delta \rho \left [\frac{1}{\sqrt{x^2+z^2}} - \frac{1}{\sqrt{x^2 + (z+L)^2}} \right ] \end{align}

As the length of the rod becomes very long, the expression reduces to, $$g_z = \frac{GA \Delta \rho}{\left [ \sqrt{x^2 + z^2}\right ]}.$$

[Top]

Model assumptions

The model assumes that:

[Top]

Drawing with LaTeX and TikZ

The following LaTeX and TikZ code draws the figure of the model geometry presented at the top of the page.

LaTeX script: vert_rod.tex

\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{calc,fadings,decorations.pathreplacing}
\usetikzlibrary{shadings}

\usepackage{verbatim}
\usepackage{verbatim}
\usepackage[active,tightpage]{preview}
\PreviewEnvironment{tikzpicture}
\setlength\PreviewBorder{5pt}%

\tikzset{%
  >=latex, % option for nice arrows
  inner sep=0pt,%
  outer sep=2pt,%
  mark coordinate/.style={inner sep=0pt,outer sep=0pt,minimum size=3pt,
    fill=black,circle}%
}

\begin{document}
\begin{tikzpicture}

%big cylinder
\fill[top color=gray!50!black,bottom color=gray!10,middle color=gray,shading=axis,opacity=0.25] (0,0) circle (1cm and 0.25cm);
\fill[left color=gray!50!black,right color=gray!50!black,middle color=gray!50,shading=axis,opacity=0.25] (1,0) -- (1,6) arc (360:180:1cm and 0.25cm) -- (-1,0) arc (180:360:1cm and 0.25cm);
\fill[top color=gray!90!,bottom color=gray!2,middle color=gray!30,shading=axis,opacity=0.25] (0,6) circle (1cm and 0.25cm);
\draw (-1,6) -- (-1,0) arc (180:360:1cm and 0.25cm) -- (1,6) ++ (-1,0) circle (1cm and 0.25cm);
\draw[densely dashed] (-1,0) arc (180:0:1cm and 0.25cm);

%cylinder segment
\fill[top color=gray!50!black,bottom color=gray!10,middle color=gray,shading=axis,opacity=0.75] (0,3) circle (1cm and 0.25cm);
\fill[left color=gray!50!black,right color=gray!50!black,middle color=gray!50,shading=axis,opacity=0.75] (1,3) -- (1,4) arc (360:180:1cm and 0.25cm) -- (-1,3) arc (180:360:1cm and 0.25cm);
\fill[top color=gray!90!,bottom color=gray!2,middle color=gray!30,shading=axis,opacity=0.75] (0,4) circle (1cm and 0.25cm);
%\draw (-2,4) -- (-2,3) arc (180:360:2cm and 0.5cm) -- (2,4) ++ (-2,3) circle (2cm and 0.5cm);
\draw[densely dashed] (-1,3) arc (180:0:1cm and 0.25cm);

\draw[teal, line width = 6, opacity = 0.2] (-5,9.9) --  (5,9.9) ;

\coordinate [mark coordinate](O) at (0,6);
\draw[<->, very thick] (O) -- node[left]{$z$} (0,10) ;
\draw[<->, very thick] (0,3.5) -- node[left]{$r$} (5,10) ;
\draw[<->, very thick] (0,10.1) -- node[above]{$x$} (5,10.1) ;
\draw[<->, very thick] (-1.4,0) -- node[left]{$L$} (-1.4, 6) ;
\node at (1.4,3.5) {$dl$};

\draw[blue, very thick, ->] (5,10) -- node[right]{$g_z$} (5,7);
\draw [black] (5,8.5) arc [radius=1.5, start angle=-90, end angle= -127];
\node at (4.4,8.4) {$\theta$};
 \node at (3,1) {$\rho_2$};
 \node at (0,1) {$\rho_1$};
 \node at (3,0.5) {$\Delta \rho = \rho_1 - \rho_2$};
\end{tikzpicture}

\end{document}