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Objectives for this week
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Schematic Earth dipolar magnetic field. The field lines placed in the page plane are
drawn as thick lines, those back with dashed lines and the field lines in front of the
page with thin lines.

• Learn about the
Fourier transform

• Learn about filtering
profile data

• Use scripts to filter
data using the
Fourier transform
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Fourier series

Any continuous (differentiable) function can be
represented as an infinite series of sine and cosine
terms. This idea was first developed by Joesph Fourier

in the 18thC while he worked out notions of the
physics of sound. The basic idea is that any function
that varies smoothly can be thought of as a Fourier
series of sine and cosine terms with varying amplitudes
and wavelengths:

f(x) = a0 +

∞∑
m=1

am cos

(
2πmx

X

)

+
∞∑
n=1

bn sin

(
2πnx

X

)

where am and bn are the coefficients that need to be
estimated to fit the function f(x), m and n are
termed wavenumber for the cosine and sine terms
respectively, and X is the fundamental wavelength –
the longest wavelength that might be considered for a
specific problem.

The amplitude of each of the cosine and sine terms is
controlled by the coefficients am and bn. The
wavelength represented by the cosine and sine terms
varies as a function of m and n respectively.

Consider the terms 2πmx
X

and 2πnx
X

. The

wavenumber (m/X and n/X) is the number of
wavelengths, or “cycles” per 2π units of x distance.
X is the maximum wavelength (or maximum
complete cycle) that can be represented on a given
map or profile.

Example

Suppose a profile of magnetic observations is 100 m in
length. For this profile, the fundamental wavelength is
100 m. m = 1 represents this longest wavelength for
the cosine terms in the Fourier series. For each one
unit step in x, 2π/100 part of the cycle is completed
(each step represents approximately 0.0628 radians
per meter). For m = 10, one step in x represents
approximately 0.628 radians per meter, a much
shorter wavelength.

Wavelength and potential fields

A Fourier series is a great way to represent potential
field anomalies. Deep gravity or magnetic sources
create broad anomalies, characterized by relatively
long wavelengths and large coefficients (am and bn)
at small wavenumbers. Shallow sources of potential
field anomalies are “short wavelength” and are
characterized by large coefficients (am and bn) at
large wavenumbers.
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Fourier series

Example

Consider the function:

f(x) = sin

(
4xπ

N

)
+ cos

(
6xπ

N

)
plotted as the thick green curve. N is the number of equally spaced sampling points that create the curve.
In this case 128 samples are spaced at 1 m intervals. The function is the sum of two curves with different
wavelengths (or wavenumbers). One curve, the sine function shown in blue, has a wavelength of 64 m. The
other curve, the cosine function shown in yellow, has a wavelength of 128/3 m, or approximately 42.6 m.
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Fourier transform

The power of Fourier series lies in the fact that it
is possible to calculate the amplitude coefficients for
the sine and cosine terms directly from the function,
f(x). The Fourier transform does this calculation.
For a continuous function:

F (k) =

∫ ∞
−∞

f(x) exp(−i2πkx)dx

where k is the wavenumber, f(x) is the function
(e.g., change in magnetic field as a function of
distance, x, and i is the imaginary unit,

√
−1.

f(x) is a function in space, F (k) is the same
function in the wavenumber domain, x is a coordinate
in space, k is the wavenumber:

k =
1

λ

where λ is the wavelength. In the same way, any
function F (k) in the wavenumber domain can be
transformed into the spatial domain.

f(x) =
1

2π

∫ ∞
−∞

F (k) exp(i2πkx)dk

Where did the sine and cosine terms go?

The notation used in this example takes advantage of
trigonometric identities:

cos x =
eix + e−ix

2

sin x =
eix − e−ix

2i

cos x + i sin x = e
ix

where i is the imaginary unit. The Fourier transform
of a real function, f(x), is a complex conjugate, with
real coefficients (the amplitudes of the cosine terms)
and imaginary coefficients (the amplitudes of the sine
terms).

Note that for −∞ < x <∞ there is no
fundamental wavelength. These equations apply to
mathematical functions, but are less useful for
geophysical series, like a magnetic profile, where the
series is not infinitely long (the profile begins and
ends) and samples are collected at discrete intervals.
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The discrete 1D Fourier Transform for geophysical
profiles

Fourier transforms of data sets, like magnetic
profiles, are calculated using the discrete Fourier
transform, which accounts for the fact that the data
do not extend to infinity and that samples are
collected at discrete intervals – so coefficients cannot
be calculated for infinitely large wavenumbers.
Formulas for the coefficients for finite data sets are:

Re(k) =

N−1∑
x=0

f(x) cos

(
2πxk

N

)
0 ≤ k ≤

N

2

Im(k) =

N−1∑
x=0

f(x) sin

(
2πxk

N

)
0 < k <

N

2

or using the shorthand notation provided by trig
identities:

F (k) =

N−1∑
x=0

f(x) exp

(
2πxk

N

)
0 ≤

N

2

Re(k) and Im(k) refer to the real (cosine) and
imaginary (sine) coefficients, respectively, for a data
set of N evenly spaced samples. As before, k/N is
the wavenumber. f(x) is the measured values as a
function of distance along the profile.

Note that the real and imaginary components
are only found to wavenumbers less than N/2.
Shorter wavelength features, corresponding to
higher wavenumbers, cannot be identified given
the sample spacing. If shorter wavelength
anomalies exist, they will appear to be longer
wavelength anomalies – a condition called
aliasing. Another way to think about this, from
the perspective of a sampling strategy, is that it
is impossible to identify an anomaly of
wavelength less than twice the sample spacing.
The Nyquist frequency is 1/2 the sampling rate
and is used to estimate the minimum wavelength
anomaly detectable.

Example

Suppose a 100 m-long magnetic profile consists
of 11 evenly spaced samples. What is the
shortest wavelength anomaly that can be
identified along the profile?

1sample

10m

1

2
=

1

20m

or a minimum wavelength of 20 m. Magnetic
sources that are shallow enough to produce
anomalies with wavelength < 20m will not be
detected.
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Power Spectrum

The real and imaginary coefficients of the Fourier transform are usually summarized using the amplitude
spectrum:

|F (k)| =
√

(ReF (k))2 + (iImF (k))2

or the power spectrum:

|F (k)|2 = (ReF (k))
2
+ (iImF (k))

2
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the Power Spectrum

The Fourier transform of geophysical data is usually shown as a power spectrum. Be sure you understand the
relationship between the wavelength, wavenumber shown on the power spectrum graph and the function
represented by the green curve at right, shown in the spatial domain. Note the amplitudes of the two curves
that comprise the green curve are equal, leading to two equal-valued wavenumbers on the power spectrum.
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Power Spectrum

Consider an example that looks a bit more realistic from the perspective of potential field data. The series
shown at the right was constructed from a Fourier series of 11 sine and cosine terms, not very many in the
scheme of things. Yet, a relatively complicated curve emerges. The Fourier transform of this curve is shown
at left using a power spectrum. Note that most of the power (the largest amplitude wavenumbers) are a long
wavelengths – corresponding to small wavenumbers. Nevertheless, you can see the contribution of relatively
high wavenumbers in both the power spectrum and in the series in the spatial domain.
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Anomaly wavelength and the power spectrum

If the curve at left were actual gravity or magnetic data, it would be reasonable to conclude that there are
different sources of the potential field anomaly, corresponding to different wavelengths (or wavenumbers) on
the power spectrum. Relatively long wavelength variation must be associated with relatively deep sources.
Short wavelength variation corresponds to relatively shallow sources. Thus, the power spectrum allows us to
differentiate sources in magnetic or gravity data as a function of depth.
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A first look at filtering

The true ‘power’ of the Fourier transform emerges when we consider how to use the power spectrum to filter
potential field data. Consider the series (green curve) and its Fourier transform (red curve). How can we
extract the relatively long wavelength anomalies associated with deeper sources from the relatively short
wavelength anomalies, associated with shallow sources? The answer lies in the power spectrum. We can
change the values of the Re(k) and Im(k) coefficients, shown together on the power spectrum, and
transform the resulting series back into the spatial domain. This is an example of filtering.

The blue curve shows the filtered data set. To make the blue curve, Re(k) and Im(k) coefficients for k > 6
(wavelengths less than 1024/6 m or about 170 m), where all set to zero. This is an example of a low-pass
filter (only relatively long wavelength features are transformed back in to the spatial domain).
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Inverse Fourier Transform

The Fourier transform is fundamentally like all mathematical transforms. The logarithmic transform allows
you to take the logarithm, y = log10x, of a number and transform it back again, x = 10y . The Fourier
transform is the same. The forward Fourier transform takes a series from space (or time) into the
wavenumber (or frequency) domain. The inverse Fourier transform takes the series from the wavenumber
domain to the spatial domain. So to perform the filtering operation, the forward Fourier transform was
calculated, the data were filtered by changing real and imaginary coefficients of the series, and the inverse
Fourier transform was calculated to put the resulting series back in the spatial domain.
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Low-pass and high-pass filtering
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Here the same series is filtered using a low pass filter,
cutting out all but the longest wavelength part of the
signal. Only the fraction with wavelength greater than
341 m is passed through the inverse Fourier transform.

-6

-4

-2

 0

 2

 4

 6

 8

 0  200  400  600  800  1000  1200

A
m

p
lit

u
d

e

Distance (m)

Here a high pass filter is used. Only the fraction of
the series with wavelength less than 341 m is passed
through the inverse Fourier transform.
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Low-pass filtering

Myriad filter designs are possible. Here a low pass filter, L(k), is used to attenuate (or eliminate) short
wavelength variation in the signal. Note that a linearly ramped filter is used. This linearly ramped filter design
changes the signal more gradually and can reduce spurious effects in the filtered data associated with abrupt
changes in the power spectrum. At wavenumber values less than the long wavelength (low wavenumber)
threshold, the signal is completely unaltered. At wavenumbers greater than the short wavelength (high
wavenumber) threshold the signal is completely cut. The ramp is in-between these threshold values.
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The original, unfiltered series is shown in green and
the low-pass filtered series is shown in blue.
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The filter design for this low pass filter is ramped,
passing long wavelengths unaltered (1) and completely
attenuating short wavelengths (0). At intermediate
wavelengths, the signal is attenuated linearly as a
function of wavelength. The wavenumber is shown as
integers of 1/λ× L, where L is the number of
samples in the series times the sample spacing.

Band-pass filters

A band-pass filter is one that cuts both short wavelength and long wavelength parts of the signal. Linearly
ramped band-pass filters are characterized by four threshold values.
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Upward continuation

Imagine that you collect a profile of magnetic data on
the ground surface, then collect magnetic data along
the same profile, but from an airplane at 1000 m
elevation. The aeromagnetic survey is further from the
source of magnetic anomalies, so the aeromagnetic
profile will be characterized by lower amplitude and
longer wavelength anomalies than the ground profile.
Because there are no magnetic sources in the air, we
can determine what the profile will look like at 1000 m
elevation given the variation in the magnetic field
observed along the ground profile. Mathematically, to
calculate the profile at 1000 m height, given the
ground profile, requires convolution of the ground
profile with another function. This convolution
operation is simple using the Fourier transform:

U(k) = F (k)e
−zk

where F (k) is the Fourier transform of the ground
magnetic profile data, f(x); k is the wavenumber
(1/λ) where λ is the wavelength; z is the distance of
the upward continuation (e.g., 1000 m). Notice that
convolution is a multiplication in the Fourier domain.

The inverse transform of U(k) is u(x), the upwardly
continued profile. For small values of k

(corresponding to long wavelengths), e−zk is close to
one and there is relatively little difference between
U(k) and F (K). As the wavenumber gets larger

(shorter wavelengths), e−zk → 0.
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Here the original data set (f(x), green) is upwardly
continued by 100 m (u(x), blue). Notice that the
relatively short wavelength features of the profile are
strongly attenuated, and the long wavelength features
of the profile are relatively unchanged. The amplitude
of all wavelengths in the green profile are reduced by
upward continuation, but the magnitude of the
reduction is strongly dependent on wavelength.

Magnetics



Magnetics

Objectives

Fourier
Transform

Power
Spectrum

Filtering

Low-pass

Upward
continuation

Derivative

Practical
Aspects

EOMA

Derivative

Recall this important characteristic of periodic
functions:

d

dx
cos x = − sin x

d

dx
sin x = cos x

This relation suggests a procedure to take the
derivative of any function using the Fourier transform.
For each wavenumber, k, the coefficient of the real
term becomes the negative of the coefficient of the
imaginary term, and the coefficient of the imaginary
term becomes the real term. This ‘switch’ is
represented algorithmically:

f(x) ⇒ F (k)

Re′(k) = −Im(k)

Im′(k) = Re(k)

F
′
(k) ⇒

d

dx
f(x)

where the double arrow indicates the forward and
inverse Fourier transforms.

The first derivative of a magnetic profile can help us
visualize the location of potential anomalies, since
inflection points on negative slopes (largest negative
first derivative) roughly coincide with the center of the
anomalous body at magnetic inclinations
0◦ < I < 90◦.
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The second derivative can also be found with a
Fourier transform, since:

d2

dx2
cos x = − cos x

d2

dx2
sin x = − sin x
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Some practical aspects of filtering with the Fourier
transform

There are some important practical aspects to working with Fourier transforms and filtering data using these
methods.

• Usually an algorithm is used to calculate the forward and inverse Fourier transforms. This algorithm
is called the fast Fourier transform (FFT). In a practical sense, there is no difference between a
Fourier transform and FFT, except that the former refers to a mathematical transformation and the
latter refers to a computational method to accomplish this transform.

• Numerous computer languages and software packages are available to do FFTs and filtering
operations. Unfortunately, these do not always use the same nomenclature, especially for indexing
data. In potential field geophysics, we are almost always concerned with filtering data that are ‘real’
(have no imaginary component) and have been collected as some sampling interval. When the data
are transformed, a real, discrete FFT algorithm is used (note that transformed data do have real and
imaginary components!).

• One characteristic of FFTs is that they require 2n equally-spaced samples along the profile (or in
the series), where n is an integer (e.g., 128, 512, or 1024 samples). Often data must be interpolated
to equal spacing, for example if there are missing values. The series can be ‘padded’ to reach 2n

samples by adding zeros (zero padding), or by repeating the series.

• Trends in data must be removed before the FFT. Trends in data are essentially associated with longer
wavelength cycles than the length of the profile. Usually a linear trend is removed before the FFT.

• Many additional filtering operations exist than are discussed in this module. For magnetics these
include reduction-to-the-pole (using a Fourier transform to make the data appear they were collected
at the magnetic north pole, assuming an angle of inclination), and the pseudo-gravimetric transform
(using the reduction to pole and additional constants to transform the magnetic field (nT) to a
gravity field (mgal) assuming a simple relation between magnetic and density properties of rocks).
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Answer the following 6 or 7 questions...

1 Suppose you collect 1024 observations of the
magnetic field along a single, straight profile
at one meter intervals along the ground.
What are the maximum and minimum
anomaly wavelengths you can observe in this
profile?

2 You upwardly continue the magnetic profile.
Draw a graph showing the coefficients of this
convolution as a function of wavenumber.
That is, graph C = e−zk , for
k = (1/1024, 2/1024, 3/1024, ..., 1).
Make this plot for different values of z and
explain what the graph means in terms of the
magnetic anomalies you might observe along
the profile at different elevations.
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Consider a N-S-trending line of magnetic data:
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Use the supplementary information to filter this series, complete the following tasks.

3 Plot the profile. The magnetic data are contained in the file dike.dat. Provide a figure caption that
includes brief discussion of the anomaly(ies) you observe on this profile.

4 Calculate and plot the power spectrum of the magnetic profile using the PERL script spectrum.pl.
Write a figure caption for this plot, explaining the power spectrum and what it means in terms of the
observed magnetic anomlay(ies).

5 Write a code to upwardly continue the magnetic profile. Use the example in supplementary material
to help you write the code. Plot the resulting profile along with the original profile on the same plot.
Experiment with different amounts of upward continuation (z) and determine which values filter the
data best, in your opinion (it is a matter of opinion!) and explain why in the figure caption.
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6 Write a perl script to low-pass-filter the
magnetic profile. Use the example in
supplemenatry material to help write this
code. Plot the resulting profile along with the
original profile on the same plot. Experiment
with different low pass filters and determine
which values filter the data best, in your
opinion (it is a matter of opinion!) and
explain why in the figure caption.

7 (extra credit) When filtering data, it is always
a great idea to plot what you have filtered out
(removed from the profile) in addition to what
has passed through the filter. Plot the
residuals (difference between the original and
filtered data), for your upwardly continued
and low-pass filtered profiles. Hey – one
person’s noise is another person’s alleatoric
masterpiece.
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